These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 18247111
1. What are the biochemical mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice? Carley AN, Severson DL. Cardiovasc Drugs Ther; 2008 Apr; 22(2):83-9. PubMed ID: 18247111 [Abstract] [Full Text] [Related]
2. Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Carley AN, Atkinson LL, Bonen A, Harper ME, Kunnathu S, Lopaschuk GD, Severson DL. Arch Physiol Biochem; 2007 Apr; 113(2):65-75. PubMed ID: 17558605 [Abstract] [Full Text] [Related]
3. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Carley AN, Severson DL. Biochim Biophys Acta; 2005 May 15; 1734(2):112-26. PubMed ID: 15904868 [Abstract] [Full Text] [Related]
4. Effect of BM 17.0744, a PPARalpha ligand, on the metabolism of perfused hearts from control and diabetic mice. Aasum E, Cooper M, Severson DL, Larsen TS. Can J Physiol Pharmacol; 2005 Feb 15; 83(2):183-90. PubMed ID: 15791292 [Abstract] [Full Text] [Related]
5. Chylomicron and palmitate metabolism by perfused hearts from diabetic mice. Neitzel AS, Carley AN, Severson DL. Am J Physiol Endocrinol Metab; 2003 Feb 15; 284(2):E357-65. PubMed ID: 12397026 [Abstract] [Full Text] [Related]
6. Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart. Dobrzyn P, Sampath H, Dobrzyn A, Miyazaki M, Ntambi JM. Am J Physiol Endocrinol Metab; 2008 Feb 15; 294(2):E357-64. PubMed ID: 18042664 [Abstract] [Full Text] [Related]
7. Perfused hearts from Type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Hafstad AD, Solevåg GH, Severson DL, Larsen TS, Aasum E. Am J Physiol Heart Circ Physiol; 2006 May 15; 290(5):H1763-9. PubMed ID: 16327015 [Abstract] [Full Text] [Related]
8. In obese Zucker rats, lipids accumulate in the heart despite normal mitochondrial content, morphology and long-chain fatty acid oxidation. Holloway GP, Snook LA, Harris RJ, Glatz JF, Luiken JJ, Bonen A. J Physiol; 2011 Jan 01; 589(Pt 1):169-80. PubMed ID: 21041527 [Abstract] [Full Text] [Related]
9. Hypoxia-induced fatty acid transporter translocation increases fatty acid transport and contributes to lipid accumulation in the heart. Chabowski A, Górski J, Calles-Escandon J, Tandon NN, Bonen A. FEBS Lett; 2006 Jun 26; 580(15):3617-23. PubMed ID: 16753149 [Abstract] [Full Text] [Related]
10. High fat diet induced diabetic cardiomyopathy. Dirkx E, Schwenk RW, Glatz JF, Luiken JJ, van Eys GJ. Prostaglandins Leukot Essent Fatty Acids; 2011 Nov 26; 85(5):219-25. PubMed ID: 21571515 [Abstract] [Full Text] [Related]
11. Regulation of cardiac fatty acids metabolism in transgenic mice overexpressing bovine GH. Bogazzi F, Raggi F, Ultimieri F, Russo D, D'Alessio A, Manariti A, Brogioni S, Manetti L, Martino E. J Endocrinol; 2009 Jun 26; 201(3):419-27. PubMed ID: 19342398 [Abstract] [Full Text] [Related]
12. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Diabetes; 2006 Feb 26; 55(2):466-73. PubMed ID: 16443782 [Abstract] [Full Text] [Related]
13. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Mansor LS, Sousa Fialho MDL, Yea G, Coumans WA, West JA, Kerr M, Carr CA, Luiken JJFP, Glatz JFC, Evans RD, Griffin JL, Tyler DJ, Clarke K, Heather LC. Cardiovasc Res; 2017 Jun 01; 113(7):737-748. PubMed ID: 28419197 [Abstract] [Full Text] [Related]
14. Increased O2 cost of basal metabolism and excitation-contraction coupling in hearts from type 2 diabetic mice. Boardman N, Hafstad AD, Larsen TS, Severson DL, Aasum E. Am J Physiol Heart Circ Physiol; 2009 May 01; 296(5):H1373-9. PubMed ID: 19286944 [Abstract] [Full Text] [Related]
15. Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Hafstad AD, Khalid AM, How OJ, Larsen TS, Aasum E. Am J Physiol Endocrinol Metab; 2007 May 01; 292(5):E1288-94. PubMed ID: 17213470 [Abstract] [Full Text] [Related]
16. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED. Diabetes; 2007 Oct 01; 56(10):2457-66. PubMed ID: 17623815 [Abstract] [Full Text] [Related]
17. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Dyck JR, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, Wallace D, Arrhenius T, Harmon C, Yang G, Nadzan AM, Lopaschuk GD. Circ Res; 2004 May 14; 94(9):e78-84. PubMed ID: 15105298 [Abstract] [Full Text] [Related]
18. Diet-induced obese mouse hearts tolerate an acute high-fatty acid exposure that also increases ischemic tolerance. Boardman NT, Pedersen TM, Rossvoll L, Hafstad AD, Aasum E. Am J Physiol Heart Circ Physiol; 2020 Sep 01; 319(3):H682-H693. PubMed ID: 32795177 [Abstract] [Full Text] [Related]
19. Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes. Oakes ND, Thalén P, Aasum E, Edgley A, Larsen T, Furler SM, Ljung B, Severson D. Am J Physiol Endocrinol Metab; 2006 May 01; 290(5):E870-81. PubMed ID: 16352676 [Abstract] [Full Text] [Related]
20. Impaired cytosolic NADH shuttling and elevated UCP3 contribute to inefficient citric acid cycle flux support of postischemic cardiac work in diabetic hearts. Banke NH, Lewandowski ED. J Mol Cell Cardiol; 2015 Feb 01; 79():13-20. PubMed ID: 25450611 [Abstract] [Full Text] [Related] Page: [Next] [New Search]