These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 18247247

  • 1. Biomechanical and energetic effects of a stance-control orthotic knee joint.
    Zissimopoulos A, Fatone S, Gard SA.
    J Rehabil Res Dev; 2007; 44(4):503-13. PubMed ID: 18247247
    [Abstract] [Full Text] [Related]

  • 2. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC, Bach TM, Pereira DM.
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [Abstract] [Full Text] [Related]

  • 3. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T, Lemaire ED, Kofman J.
    Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [Abstract] [Full Text] [Related]

  • 4. The gait and energy efficiency of stance control knee-ankle-foot orthoses: A literature review.
    Rafiaei M, Bahramizadeh M, Arazpour M, Samadian M, Hutchins SW, Farahmand F, Mardani MA.
    Prosthet Orthot Int; 2016 Apr; 40(2):202-14. PubMed ID: 26055252
    [Abstract] [Full Text] [Related]

  • 5. Evaluation of a variable resistance orthotic knee joint.
    Herbert-Copley A, Lemaire ED, Baddour N.
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2210-2213. PubMed ID: 28268770
    [Abstract] [Full Text] [Related]

  • 6. The effect of footwear adapted with a multi-curved rocker sole in conjunction with knee-ankle-foot orthoses on walking in poliomyelitis subjects: a pilot study.
    Mojaver A, Arazpour M, Aminian G, Ahmadi Bani M, Bahramizadeh M, Sharifi G, Sherafatvaziri A.
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):747-751. PubMed ID: 27982715
    [Abstract] [Full Text] [Related]

  • 7. State of the art review of knee-ankle-foot orthoses.
    Tian F, Hefzy MS, Elahinia M.
    Ann Biomed Eng; 2015 Feb; 43(2):427-41. PubMed ID: 25631201
    [Abstract] [Full Text] [Related]

  • 8. Gait of stance control orthosis users: the dynamic knee brace system.
    Irby SE, Bernhardt KA, Kaufman KR.
    Prosthet Orthot Int; 2005 Dec; 29(3):269-82. PubMed ID: 16466156
    [Abstract] [Full Text] [Related]

  • 9. Engineering design review of stance-control knee-ankle-foot orthoses.
    Yakimovich T, Lemaire ED, Kofman J.
    J Rehabil Res Dev; 2009 Dec; 46(2):257-67. PubMed ID: 19533539
    [Abstract] [Full Text] [Related]

  • 10. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study.
    Arazpour M, Moradi A, Samadian M, Bahramizadeh M, Joghtaei M, Ahmadi Bani M, Hutchins SW, Mardani MA.
    Prosthet Orthot Int; 2016 Jun; 40(3):377-83. PubMed ID: 26184037
    [Abstract] [Full Text] [Related]

  • 11. Examination of knee joint moments on the function of knee-ankle-foot orthoses during walking.
    Andrysek J, Klejman S, Kooy J.
    J Appl Biomech; 2013 Aug; 29(4):474-80. PubMed ID: 23182738
    [Abstract] [Full Text] [Related]

  • 12. Design, construction, and evaluation of "sensor lock": an electromechanical stance control knee joint.
    Arazpour M, Ahmadi Bani M, Baniasad M, Samadian M, Golchin N.
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):226-233. PubMed ID: 28350511
    [Abstract] [Full Text] [Related]

  • 13. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 14. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis.
    Hebert JS, Liggins AB.
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1676-80. PubMed ID: 16084826
    [Abstract] [Full Text] [Related]

  • 15. Gait evaluation of a new electromechanical stance-control knee-ankle-foot orthosis.
    Yakimovich T, Lemaire ED, Kofman J.
    Conf Proc IEEE Eng Med Biol Soc; 2006 Aug; 2006():5924-7. PubMed ID: 17946729
    [Abstract] [Full Text] [Related]

  • 16. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.
    Schmalz T, Pröbsting E, Auberger R, Siewert G.
    Prosthet Orthot Int; 2016 Apr; 40(2):277-86. PubMed ID: 25249381
    [Abstract] [Full Text] [Related]

  • 17. The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke.
    Kobayashi T, Leung AK, Akazawa Y, Hutchins SW.
    Gait Posture; 2013 Mar; 37(3):457-9. PubMed ID: 22921491
    [Abstract] [Full Text] [Related]

  • 18. Gait dynamics in the wide spectrum of children with arthrogryposis: a descriptive study.
    Eriksson M, Bartonek Å, Pontén E, Gutierrez-Farewik EM.
    BMC Musculoskelet Disord; 2015 Dec 09; 16():384. PubMed ID: 26821804
    [Abstract] [Full Text] [Related]

  • 19. Biomechanical effect of electromechanical knee-ankle-foot-orthosis on knee joint control in patients with poliomyelitis.
    Hwang S, Kang S, Cho K, Kim Y.
    Med Biol Eng Comput; 2008 Jun 09; 46(6):541-9. PubMed ID: 18259793
    [Abstract] [Full Text] [Related]

  • 20. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M, Ahmadi F, Bani MA, Hutchins SW, Bahramizadeh M, Ghomshe FT, Kashani RV.
    Prosthet Orthot Int; 2014 Feb 09; 38(1):39-45. PubMed ID: 23660383
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.