These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


270 related items for PubMed ID: 18247603

  • 1. Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: a density functional theory study.
    Chen SL, Marino T, Fang WH, Russo N, Himo F.
    J Phys Chem B; 2008 Feb 28; 112(8):2494-500. PubMed ID: 18247603
    [Abstract] [Full Text] [Related]

  • 2. Reaction mechanism of the binuclear zinc enzyme glyoxalase II - A theoretical study.
    Chen SL, Fang WH, Himo F.
    J Inorg Biochem; 2009 Feb 28; 103(2):274-81. PubMed ID: 19062100
    [Abstract] [Full Text] [Related]

  • 3. Spectroscopic and X-ray crystallographic characterization of bestatin bound to the aminopeptidase from Aeromonas (Vibrio) proteolytica.
    Stamper CC, Bienvenue DL, Bennett B, Ringe D, Petsko GA, Holz RC.
    Biochemistry; 2004 Aug 03; 43(30):9620-8. PubMed ID: 15274616
    [Abstract] [Full Text] [Related]

  • 4. Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis.
    Chen G, Edwards T, D'souza VM, Holz RC.
    Biochemistry; 1997 Apr 08; 36(14):4278-86. PubMed ID: 9100023
    [Abstract] [Full Text] [Related]

  • 5. Aeromonas proteolytica aminopeptidase: an investigation of the mode of action using a quantum mechanical/molecular mechanical approach.
    Schürer G, Lanig H, Clark T.
    Biochemistry; 2004 May 11; 43(18):5414-27. PubMed ID: 15122907
    [Abstract] [Full Text] [Related]

  • 6. Theoretical investigation of the reaction mechanism of the dinuclear zinc enzyme dihydroorotase.
    Liao RZ, Yu JG, Raushel FM, Himo F.
    Chemistry; 2008 May 11; 14(14):4287-92. PubMed ID: 18366031
    [Abstract] [Full Text] [Related]

  • 7. Dipeptide hydrolysis by the dinuclear zinc enzyme human renal dipeptidase: mechanistic insights from DFT calculations.
    Liao RZ, Himo F, Yu JG, Liu RZ.
    J Inorg Biochem; 2010 Jan 11; 104(1):37-46. PubMed ID: 19879002
    [Abstract] [Full Text] [Related]

  • 8. Streptomyces griseus aminopeptidase: X-ray crystallographic structure at 1.75 A resolution.
    Greenblatt HM, Almog O, Maras B, Spungin-Bialik A, Barra D, Blumberg S, Shoham G.
    J Mol Biol; 1997 Feb 07; 265(5):620-36. PubMed ID: 9048953
    [Abstract] [Full Text] [Related]

  • 9. Reaction mechanism of the dinuclear zinc enzyme N-acyl-L-homoserine lactone hydrolase: a quantum chemical study.
    Liao RZ, Yu JG, Himo F.
    Inorg Chem; 2009 Feb 16; 48(4):1442-8. PubMed ID: 19159270
    [Abstract] [Full Text] [Related]

  • 10. Kinetic, spectroscopic, and X-ray crystallographic characterization of the functional E151H aminopeptidase from Aeromonas proteolytica.
    Bzymek KP, Moulin A, Swierczek SI, Ringe D, Petsko GA, Bennett B, Holz RC.
    Biochemistry; 2005 Sep 13; 44(36):12030-40. PubMed ID: 16142900
    [Abstract] [Full Text] [Related]

  • 11. Reaction mechanism of the trinuclear zinc enzyme phospholipase C: a density functional theory study.
    Liao RZ, Yu JG, Himo F.
    J Phys Chem B; 2010 Feb 25; 114(7):2533-40. PubMed ID: 20121060
    [Abstract] [Full Text] [Related]

  • 12. The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica.
    Desmarais W, Bienvenue DL, Bzymek KP, Petsko GA, Ringe D, Holz RC.
    J Biol Inorg Chem; 2006 Jun 25; 11(4):398-408. PubMed ID: 16596389
    [Abstract] [Full Text] [Related]

  • 13. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
    Fabiane SM, Sohi MK, Wan T, Payne DJ, Bateson JH, Mitchell T, Sutton BJ.
    Biochemistry; 1998 Sep 08; 37(36):12404-11. PubMed ID: 9730812
    [Abstract] [Full Text] [Related]

  • 14. Theoretical investigation of astacin proteolysis.
    Chen SL, Li ZS, Fang WH.
    J Inorg Biochem; 2012 Jun 08; 111():70-9. PubMed ID: 22484502
    [Abstract] [Full Text] [Related]

  • 15. 1-Butaneboronic acid binding to Aeromonas proteolytica aminopeptidase: a case of arrested development.
    De Paola CC, Bennett B, Holz RC, Ringe D, Petsko GA.
    Biochemistry; 1999 Jul 13; 38(28):9048-53. PubMed ID: 10413478
    [Abstract] [Full Text] [Related]

  • 16. Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding.
    Bennett B, Holz RC.
    Biochemistry; 1997 Aug 12; 36(32):9837-46. PubMed ID: 9245416
    [Abstract] [Full Text] [Related]

  • 17. The aminopeptidase from Aeromonas proteolytica can function as an esterase.
    Bienvenue DL, Mathew RS, Ringe D, Holz RC.
    J Biol Inorg Chem; 2002 Jan 12; 7(1-2):129-35. PubMed ID: 11862549
    [Abstract] [Full Text] [Related]

  • 18. Inhibition of the aminopeptidase from Aeromonas proteolytica by aliphatic alcohols. Characterization of the hydrophobic substrate recognition site.
    Ustynyuk L, Bennett B, Edwards T, Holz RC.
    Biochemistry; 1999 Aug 31; 38(35):11433-9. PubMed ID: 10471294
    [Abstract] [Full Text] [Related]

  • 19. X-ray crystallographic characterization of the Co(II)-substituted Tris-bound form of the aminopeptidase from Aeromonas proteolytica.
    Munih P, Moulin A, Stamper CC, Bennett B, Ringe D, Petsko GA, Holz RC.
    J Inorg Biochem; 2007 Aug 31; 101(8):1099-107. PubMed ID: 17574677
    [Abstract] [Full Text] [Related]

  • 20. The 1.20 A resolution crystal structure of the aminopeptidase from Aeromonas proteolytica complexed with tris: a tale of buffer inhibition.
    Desmarais WT, Bienvenue DL, Bzymek KP, Holz RC, Petsko GA, Ringe D.
    Structure; 2002 Aug 31; 10(8):1063-72. PubMed ID: 12176384
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.