These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
267 related items for PubMed ID: 18252802
1. Gene Ontology-driven transcriptional analysis of CD34+ cell-initiated megakaryocytic cultures identifies new transcriptional regulators of megakaryopoiesis. Fuhrken PG, Chen C, Apostolidis PA, Wang M, Miller WM, Papoutsakis ET. Physiol Genomics; 2008 Apr 22; 33(2):159-69. PubMed ID: 18252802 [Abstract] [Full Text] [Related]
2. Comparative, genome-scale transcriptional analysis of CHRF-288-11 and primary human megakaryocytic cell cultures provides novel insights into lineage-specific differentiation. Fuhrken PG, Chen C, Miller WM, Papoutsakis ET. Exp Hematol; 2007 Mar 22; 35(3):476-489. PubMed ID: 17309828 [Abstract] [Full Text] [Related]
3. Interleukin-4 downregulates nuclear factor-erythroid 2 (NF-E2) expression in primary megakaryocytes and in megakaryoblastic cell lines. Catani L, Amabile M, Luatti S, Valdrè L, Vianelli N, Martinelli G, Tura S. Stem Cells; 2001 Mar 22; 19(4):339-47. PubMed ID: 11463954 [Abstract] [Full Text] [Related]
4. CD226 is expressed on the megakaryocytic lineage from hematopoietic stem cells/progenitor cells and involved in its polyploidization. Ma D, Sun Y, Lin D, Wang H, Dai B, Zhang X, Ouyang W, Jian J, Jia W, Xu X, Jin B. Eur J Haematol; 2005 Mar 22; 74(3):228-40. PubMed ID: 15693793 [Abstract] [Full Text] [Related]
5. Downregulation of signal transducer and activator of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development, whereas activation of STAT5 drives erythropoiesis. Olthof SG, Fatrai S, Drayer AL, Tyl MR, Vellenga E, Schuringa JJ. Stem Cells; 2008 Jul 22; 26(7):1732-42. PubMed ID: 18436865 [Abstract] [Full Text] [Related]
6. A potential activity of valproic acid in the stimulation of interleukin-3-mediated megakaryopoiesis and erythropoiesis. Liu B, Ohishi K, Yamamura K, Suzuki K, Monma F, Ino K, Nishii K, Masuya M, Sekine T, Heike Y, Takaue Y, Katayama N. Exp Hematol; 2010 Aug 22; 38(8):685-95. PubMed ID: 20381581 [Abstract] [Full Text] [Related]
7. Differential gene expression in human hematopoietic stem cells specified toward erythroid, megakaryocytic, and granulocytic lineage. Liu XL, Yuan JY, Zhang JW, Zhang XH, Wang RX. J Leukoc Biol; 2007 Oct 22; 82(4):986-1002. PubMed ID: 17626799 [Abstract] [Full Text] [Related]
8. Transcriptional regulatory network analysis of developing human erythroid progenitors reveals patterns of coregulation and potential transcriptional regulators. Keller MA, Addya S, Vadigepalli R, Banini B, Delgrosso K, Huang H, Surrey S. Physiol Genomics; 2006 Dec 13; 28(1):114-28. PubMed ID: 16940433 [Abstract] [Full Text] [Related]
10. Gene expression profile of primary human CD34+CD38lo cells differentiating along the megakaryocyte lineage. Shim MH, Hoover A, Blake N, Drachman JG, Reems JA. Exp Hematol; 2004 Jul 13; 32(7):638-48. PubMed ID: 15246160 [Abstract] [Full Text] [Related]
11. Overexpression of Ets-1 in human hematopoietic progenitor cells blocks erythroid and promotes megakaryocytic differentiation. Lulli V, Romania P, Morsilli O, Gabbianelli M, Pagliuca A, Mazzeo S, Testa U, Peschle C, Marziali G. Cell Death Differ; 2006 Jul 13; 13(7):1064-74. PubMed ID: 16294212 [Abstract] [Full Text] [Related]
12. Timing and expression level of protein kinase C epsilon regulate the megakaryocytic differentiation of human CD34 cells. Gobbi G, Mirandola P, Sponzilli I, Micheloni C, Malinverno C, Cocco L, Vitale M. Stem Cells; 2007 Sep 13; 25(9):2322-9. PubMed ID: 17569788 [Abstract] [Full Text] [Related]
13. Expression and regulation of NFAT (nuclear factors of activated T cells) in human CD34+ cells: down-regulation upon myeloid differentiation. Kiani A, Habermann I, Haase M, Feldmann S, Boxberger S, Sanchez-Fernandez MA, Thiede C, Bornhäuser M, Ehninger G. J Leukoc Biol; 2004 Nov 13; 76(5):1057-65. PubMed ID: 15292278 [Abstract] [Full Text] [Related]
14. Thromboxane synthase has the same pattern of expression as platelet specific glycoproteins during human megakaryocyte differentiation. Vitrat N, Letestu R, Massé A, Lazar V, Vainchenker W, Debili N. Thromb Haemost; 2000 May 13; 83(5):759-68. PubMed ID: 10823275 [Abstract] [Full Text] [Related]
15. Glycoprotein Ibalpha promoter drives megakaryocytic lineage-restricted expression after hematopoietic stem cell transduction using a self-inactivating lentiviral vector. Lavenu-Bombled C, Izac B, Legrand F, Cambot M, Vigier A, Massé JM, Dubart-Kupperschmitt A. Stem Cells; 2007 Jun 13; 25(6):1571-7. PubMed ID: 17379771 [Abstract] [Full Text] [Related]
16. Transcriptional profiling of human hematopoiesis during in vitro lineage-specific differentiation. Komor M, Güller S, Baldus CD, de Vos S, Hoelzer D, Ottmann OG, Hofmann WK. Stem Cells; 2005 Sep 13; 23(8):1154-69. PubMed ID: 15955831 [Abstract] [Full Text] [Related]
17. Zyxin is up-regulated during megakaryocytic differentiation of human UT-7/c-mpl cells. Decraene C, Garçon L, Lacout C, Sabri S, Auffray C, Vainchenker W, Duménil D, Piétu G, Svinartchuk F. Biochem Biophys Res Commun; 2004 May 28; 318(2):439-43. PubMed ID: 15120620 [Abstract] [Full Text] [Related]
19. PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein. Labbaye C, Quaranta MT, Pagliuca A, Militi S, Licht JD, Testa U, Peschle C. Oncogene; 2002 Sep 26; 21(43):6669-79. PubMed ID: 12242665 [Abstract] [Full Text] [Related]
20. The kinetic status of hematopoietic stem cell subpopulations underlies a differential expression of genes involved in self-renewal, commitment, and engraftment. Manfredini R, Zini R, Salati S, Siena M, Tenedini E, Tagliafico E, Montanari M, Zanocco-Marani T, Gemelli C, Vignudelli T, Grande A, Fogli M, Rossi L, Fagioli ME, Catani L, Lemoli RM, Ferrari S. Stem Cells; 2005 Apr 26; 23(4):496-506. PubMed ID: 15790771 [Abstract] [Full Text] [Related] Page: [Next] [New Search]