These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials. Nishihara H, Itoi H, Kogure T, Hou PX, Touhara H, Okino F, Kyotani T. Chemistry; 2009 Nov; 15(21):5355-63. PubMed ID: 19338036 [Abstract] [Full Text] [Related]
7. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G. ACS Nano; 2010 Mar 23; 4(3):1337-44. PubMed ID: 20180559 [Abstract] [Full Text] [Related]
8. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G. Small; 2011 Apr 18; 7(8):1108-17. PubMed ID: 21449047 [Abstract] [Full Text] [Related]
13. Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors. Jiang DE, Wu J. J Phys Chem Lett; 2013 Apr 18; 4(8):1260-7. PubMed ID: 26282139 [Abstract] [Full Text] [Related]
14. Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Heimböckel R, Hoffmann F, Fröba M. Phys Chem Chem Phys; 2019 Feb 06; 21(6):3122-3133. PubMed ID: 30675602 [Abstract] [Full Text] [Related]
15. Electrosorption capacitance of nanostructured carbon-based materials. Hou CH, Liang C, Yiacoumi S, Dai S, Tsouris C. J Colloid Interface Sci; 2006 Oct 01; 302(1):54-61. PubMed ID: 16842809 [Abstract] [Full Text] [Related]
16. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy. Mousavi MP, Wilson BE, Kashefolgheta S, Anderson EL, He S, Bühlmann P, Stein A. ACS Appl Mater Interfaces; 2016 Feb 10; 8(5):3396-406. PubMed ID: 26771378 [Abstract] [Full Text] [Related]
17. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. Richey FW, Dyatkin B, Gogotsi Y, Elabd YA. J Am Chem Soc; 2013 Aug 28; 135(34):12818-26. PubMed ID: 23915377 [Abstract] [Full Text] [Related]
18. Theoretical approach to ion penetration into pores with pore fractal characteristics during double-layer charging/discharging on a porous carbon electrode. Lee GJ, Pyun SI. Langmuir; 2006 Dec 05; 22(25):10659-65. PubMed ID: 17129044 [Abstract] [Full Text] [Related]
19. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Kalluri RK, Biener MM, Suss ME, Merrill MD, Stadermann M, Santiago JG, Baumann TF, Biener J, Striolo A. Phys Chem Chem Phys; 2013 Feb 21; 15(7):2309-20. PubMed ID: 23295944 [Abstract] [Full Text] [Related]
20. On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores. Xing L, Vatamanu J, Borodin O, Bedrov D. J Phys Chem Lett; 2013 Jan 03; 4(1):132-40. PubMed ID: 26291225 [Abstract] [Full Text] [Related] Page: [Next] [New Search]