These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


363 related items for PubMed ID: 18258398

  • 21. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.
    Varghese GI, Zhu X, Frisina RD.
    Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336
    [Abstract] [Full Text] [Related]

  • 22. Efferent-induced change in human cochlear compression and its influence on masking of tones.
    Bhagat SP, Carter PH.
    Neurosci Lett; 2010 Nov 19; 485(2):94-7. PubMed ID: 20813158
    [Abstract] [Full Text] [Related]

  • 23. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs].
    Kong W, Yang Y, Zhang W.
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug 19; 36(4):271-4. PubMed ID: 12761994
    [Abstract] [Full Text] [Related]

  • 24. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.
    Guinan JJ.
    Ear Hear; 2006 Dec 19; 27(6):589-607. PubMed ID: 17086072
    [Abstract] [Full Text] [Related]

  • 25. Detection of hearing loss using 2f2-f1 and 2f1-f2 distortion-product otoacoustic emissions.
    Fitzgerald TS, Prieve BA.
    J Speech Lang Hear Res; 2005 Oct 19; 48(5):1165-86. PubMed ID: 16411804
    [Abstract] [Full Text] [Related]

  • 26. Adaptation of distortion product otoacoustic emissions predicts susceptibility to acoustic over-exposure in alert rabbits.
    Luebke AE, Stagner BB, Martin GK, Lonsbury-Martin BL.
    J Acoust Soc Am; 2014 Apr 19; 135(4):1941-9. PubMed ID: 25234992
    [Abstract] [Full Text] [Related]

  • 27. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice.
    Zhu X, Vasilyeva ON, Kim S, Jacobson M, Romney J, Waterman MS, Tuttle D, Frisina RD.
    J Comp Neurol; 2007 Aug 10; 503(5):593-604. PubMed ID: 17559088
    [Abstract] [Full Text] [Related]

  • 28. Speech-in-noise intelligibility does not correlate with efferent olivocochlear reflex in humans with normal hearing.
    Wagner W, Frey K, Heppelmann G, Plontke SK, Zenner HP.
    Acta Otolaryngol; 2008 Jan 10; 128(1):53-60. PubMed ID: 17851961
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions.
    Deeter R, Abel R, Calandruccio L, Dhar S.
    J Acoust Soc Am; 2009 Nov 10; 126(5):2413-24. PubMed ID: 19894823
    [Abstract] [Full Text] [Related]

  • 31. Changes in amplitude and phase of distortion-product otoacoustic emission fine-structure and separated components during efferent activation.
    Henin S, Thompson S, Abdelrazeq S, Long GR.
    J Acoust Soc Am; 2011 Apr 10; 129(4):2068-79. PubMed ID: 21476662
    [Abstract] [Full Text] [Related]

  • 32. Otoacoustic emissions in early noise-induced hearing loss.
    Shupak A, Tal D, Sharoni Z, Oren M, Ravid A, Pratt H.
    Otol Neurotol; 2007 Sep 10; 28(6):745-52. PubMed ID: 17721363
    [Abstract] [Full Text] [Related]

  • 33. Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex.
    Abdala C, Mishra SK, Williams TL.
    J Acoust Soc Am; 2009 Mar 10; 125(3):1584-94. PubMed ID: 19275316
    [Abstract] [Full Text] [Related]

  • 34. Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice.
    Xu Y, Cheatham MA, Siegel JH.
    J Assoc Res Otolaryngol; 2017 Aug 10; 18(4):543-553. PubMed ID: 28303411
    [Abstract] [Full Text] [Related]

  • 35. Transient otoacoustic emissions in the detection of olivocochlear bundle maturation.
    Gkoritsa E, Tsakanikos M, Korres S, Dellagrammaticas H, Apostolopoulos N, Ferekidis E.
    Int J Pediatr Otorhinolaryngol; 2006 Apr 10; 70(4):671-6. PubMed ID: 16198429
    [Abstract] [Full Text] [Related]

  • 36. Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss.
    Reavis KM, Phillips DS, Fausti SA, Gordon JS, Helt WJ, Wilmington D, Bratt GW, Konrad-Martin D.
    Ear Hear; 2008 Dec 10; 29(6):875-93. PubMed ID: 18753950
    [Abstract] [Full Text] [Related]

  • 37. Amplitude modulation of DPOAEs by acoustic stimulation of the contralateral ear.
    Harrison RV, Sharma A, Brown T, Jiwani S, James AL.
    Acta Otolaryngol; 2008 Apr 10; 128(4):404-7. PubMed ID: 18368574
    [Abstract] [Full Text] [Related]

  • 38. Distortion product otoacoustic emissions in an industrial setting.
    Korres GS, Balatsouras DG, Tzagaroulakis A, Kandiloros D, Ferekidou E, Korres S.
    Noise Health; 2009 Apr 10; 11(43):103-10. PubMed ID: 19414930
    [Abstract] [Full Text] [Related]

  • 39. The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Zhao W, Dhar S.
    J Assoc Res Otolaryngol; 2010 Mar 10; 11(1):53-67. PubMed ID: 19798532
    [Abstract] [Full Text] [Related]

  • 40. Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans.
    Müller J, Janssen T, Heppelmann G, Wagner W.
    J Acoust Soc Am; 2005 Dec 10; 118(6):3747-56. PubMed ID: 16419819
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.