These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 18259877
1. Sugar beet leaves as new source of hydroperoxide lyase in a bioprocess producing green-note aldehydes. Rabetafika HN, Gigot C, Fauconnier ML, Ongena M, Destain J, du Jardin P, Wathelet JP, Thonart P. Biotechnol Lett; 2008 Jun; 30(6):1115-9. PubMed ID: 18259877 [Abstract] [Full Text] [Related]
2. Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids. Tijet N, Schneider C, Muller BL, Brash AR. Arch Biochem Biophys; 2001 Feb 15; 386(2):281-9. PubMed ID: 11368353 [Abstract] [Full Text] [Related]
3. Hydroperoxide-lyase activity in mint leaves. Volatile C6-aldehyde production from hydroperoxy-fatty acids. Gargouri M, Drouet P, Legoy MD. J Biotechnol; 2004 Jul 01; 111(1):59-65. PubMed ID: 15196770 [Abstract] [Full Text] [Related]
4. Purification of hydroperoxide lyase from green bell pepper (Capsicum annuum L.) fruits for the generation of C6-aldehydes in vitro. Husson F, Belin JM. J Agric Food Chem; 2002 Mar 27; 50(7):1991-5. PubMed ID: 11902945 [Abstract] [Full Text] [Related]
5. Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase. Buchhaupt M, Guder JC, Etschmann MM, Schrader J. Appl Microbiol Biotechnol; 2012 Jan 27; 93(1):159-68. PubMed ID: 21789493 [Abstract] [Full Text] [Related]
6. Production of hexenol in a two-enzyme system: kinetic study and modelling. Akacha NB, Boubaker O, Gargouri M. Biotechnol Lett; 2005 Dec 27; 27(23-24):1875-8. PubMed ID: 16328983 [Abstract] [Full Text] [Related]
8. Biosynthesis of trans-2-hexenal in response to wounding in strawberry fruit. Myung K, Hamilton-Kemp TR, Archbold DD. J Agric Food Chem; 2006 Feb 22; 54(4):1442-8. PubMed ID: 16478272 [Abstract] [Full Text] [Related]
9. The homolytic and heterolytic fatty acid hydroperoxide lyase-like activities of hematin. Delcarte J, Jacques P, Fauconnier ML, Hoyaux P, Matsui K, Marlier M, Thonart P. Biochem Biophys Res Commun; 2001 Aug 10; 286(1):28-32. PubMed ID: 11485303 [Abstract] [Full Text] [Related]
10. A simple and efficient system for green note compound biogenesis by use of certain lipoxygenase and hydroperoxide lyase sources. Fukushige H, Hildebrand DF. J Agric Food Chem; 2005 Aug 24; 53(17):6877-82. PubMed ID: 16104814 [Abstract] [Full Text] [Related]
11. Immobilisation of a hydroperoxide lyase and comparative enzymological studies of the immobilised enzyme with membrane-bound enzyme. Liu Q, Kong X, Zhang C, Chen Y, Hua Y. J Sci Food Agric; 2013 Jun 24; 93(8):1953-9. PubMed ID: 23255235 [Abstract] [Full Text] [Related]
12. Development of a biocatalytic process for the production of c6-aldehydes from vegetable oils by soybean lipoxygenase and recombinant hydroperoxide lyase. Noordermeer MA, Van Der Goot W, Van Kooij AJ, Veldsink JW, Veldink GA, Vliegenthart JF. J Agric Food Chem; 2002 Jul 17; 50(15):4270-4. PubMed ID: 12105957 [Abstract] [Full Text] [Related]
13. CYP74B24 is the 13-hydroperoxide lyase involved in biosynthesis of green leaf volatiles in tea (Camellia sinensis). Ono E, Handa T, Koeduka T, Toyonaga H, Tawfik MM, Shiraishi A, Murata J, Matsui K. Plant Physiol Biochem; 2016 Jan 17; 98():112-8. PubMed ID: 26686283 [Abstract] [Full Text] [Related]
14. Olive Recombinant Hydroperoxide Lyase, an Efficient Biocatalyst for Synthesis of Green Leaf Volatiles. Jacopini S, Mariani M, de Caraffa VB, Gambotti C, Vincenti S, Desjobert JM, Muselli A, Costa J, Berti L, Maury J. Appl Biochem Biotechnol; 2016 Jun 17; 179(4):671-83. PubMed ID: 26961190 [Abstract] [Full Text] [Related]
15. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Matsui K. Curr Opin Plant Biol; 2006 Jun 17; 9(3):274-80. PubMed ID: 16595187 [Abstract] [Full Text] [Related]
16. Stability of hydroperoxide lyase activity from Amaranthus tricolor (Amaranthus mangostanus L.) leaves: influence of selected additives. Long Z, Kong X, Zhang C, Hua Y. J Sci Food Agric; 2010 Apr 15; 90(5):729-34. PubMed ID: 20355105 [Abstract] [Full Text] [Related]
17. Potato tubers exhibit both homolytic and heterolytic hydroperoxide fatty acid-cleaving activities. Fauconnier ML, Delcarte J, Hoyaux P, du Jardin P, Marlier M. Biochem Soc Trans; 2000 Dec 15; 28(6):853-5. PubMed ID: 11171231 [Abstract] [Full Text] [Related]
18. Hydroperoxide lyases (CYP74C and CYP74B) catalyze the homolytic isomerization of fatty acid hydroperoxides into hemiacetals. Grechkin AN, Brühlmann F, Mukhtarova LS, Gogolev YV, Hamberg M. Biochim Biophys Acta; 2006 Dec 15; 1761(12):1419-28. PubMed ID: 17049304 [Abstract] [Full Text] [Related]
19. Mung bean lipoxygenase in the production of a C6-aldehyde. Natural green-note flavor generation via biotransformation. Chow Y, Liew TH, Keh HH, Ko A, Puah SM, Nguyen TB, Zaman NB, Wu J, Talukder MM, Choi WJ. Biotechnol J; 2007 Nov 15; 2(11):1375-80. PubMed ID: 17886236 [Abstract] [Full Text] [Related]
20. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives. Akacha NB, Karboune S, Gargouri M, Kermasha S. Appl Biochem Biotechnol; 2010 Mar 15; 160(3):901-11. PubMed ID: 19430937 [Abstract] [Full Text] [Related] Page: [Next] [New Search]