These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 1826904
21. A nucleotide sequence in the translation start signal region is involved in heat shock-induced translation arrest in Escherichia coli. Kuriki Y. FEBS Lett; 1990 May 07; 264(1):121-4. PubMed ID: 2186926 [Abstract] [Full Text] [Related]
22. The htrM gene, whose product is essential for Escherichia coli viability only at elevated temperatures, is identical to the rfaD gene. Raina S, Georgopoulos C. Nucleic Acids Res; 1991 Jul 25; 19(14):3811-9. PubMed ID: 1861974 [Abstract] [Full Text] [Related]
23. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. Allen SP, Polazzi JO, Gierse JK, Easton AM. J Bacteriol; 1992 Nov 25; 174(21):6938-47. PubMed ID: 1356969 [Abstract] [Full Text] [Related]
24. Sequence analysis and transcriptional regulation of the Escherichia coli grpE gene, encoding a heat shock protein. Lipinska B, King J, Ang D, Georgopoulos C. Nucleic Acids Res; 1988 Aug 11; 16(15):7545-62. PubMed ID: 3045760 [Abstract] [Full Text] [Related]
25. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE. Wu B, Georgopoulos C, Ang D. J Bacteriol; 1992 Aug 11; 174(16):5258-64. PubMed ID: 1644751 [Abstract] [Full Text] [Related]
26. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. Zuber U, Schumann W. J Bacteriol; 1994 Mar 11; 176(5):1359-63. PubMed ID: 8113175 [Abstract] [Full Text] [Related]
27. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli. Morita MT, Kanemori M, Yanagi H, Yura T. Proc Natl Acad Sci U S A; 2000 May 23; 97(11):5860-5. PubMed ID: 10801971 [Abstract] [Full Text] [Related]
30. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Nagai H, Yuzawa H, Kanemori M, Yura T. Proc Natl Acad Sci U S A; 1994 Oct 25; 91(22):10280-4. PubMed ID: 7937941 [Abstract] [Full Text] [Related]
32. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus. Wu J, Newton A. J Bacteriol; 1996 Apr 25; 178(7):2094-101. PubMed ID: 8606189 [Abstract] [Full Text] [Related]
33. Reexamining transcriptional regulation of the Bacillus subtilis htpX gene and the ykrK gene, encoding a novel type of transcriptional regulator, and redefining the YkrK operator. Lin TH, Huang SC, Shaw GC. J Bacteriol; 2012 Dec 25; 194(24):6758-65. PubMed ID: 23042994 [Abstract] [Full Text] [Related]
34. Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli. Tobe T, Ito K, Yura T. Mol Gen Genet; 1984 Dec 25; 195(1-2):10-6. PubMed ID: 6092838 [Abstract] [Full Text] [Related]
35. Suppression of rpoH (htpR) mutations of Escherichia coli: heat shock response in suhA revertants. Tobe T, Kusukawa N, Yura T. J Bacteriol; 1987 Sep 25; 169(9):4128-34. PubMed ID: 3305481 [Abstract] [Full Text] [Related]