These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 18270017

  • 1. Manufacture of Passive Dynamic ankle-foot orthoses using selective laser sintering.
    Faustini MC, Neptune RR, Crawford RH, Stanhope SJ.
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):784-90. PubMed ID: 18270017
    [Abstract] [Full Text] [Related]

  • 2. Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: a comparison of patient walking performance.
    Harper NG, Russell EM, Wilken JM, Neptune RR.
    J Biomech Eng; 2014 Sep; 136(9):091001. PubMed ID: 24870600
    [Abstract] [Full Text] [Related]

  • 3. Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot.
    Creylman V, Muraru L, Pallari J, Vertommen H, Peeraer L.
    Prosthet Orthot Int; 2013 Apr; 37(2):132-8. PubMed ID: 22833516
    [Abstract] [Full Text] [Related]

  • 4. Dynamic assist by carbon fiber spring AFOs for patients with myelomeningocele.
    Wolf SI, Alimusaj M, Rettig O, Döderlein L.
    Gait Posture; 2008 Jul; 28(1):175-7. PubMed ID: 18255293
    [Abstract] [Full Text] [Related]

  • 5. A new method for evaluating ankle foot orthosis characteristics: BRUCE.
    Bregman DJ, Rozumalski A, Koops D, de Groot V, Schwartz M, Harlaar J.
    Gait Posture; 2009 Aug; 30(2):144-9. PubMed ID: 19520576
    [Abstract] [Full Text] [Related]

  • 6. Manufacture of energy storage and return prosthetic feet using selective laser sintering.
    South BJ, Fey NP, Bosker G, Neptune RR.
    J Biomech Eng; 2010 Jan; 132(1):015001. PubMed ID: 20524754
    [Abstract] [Full Text] [Related]

  • 7. Modeling neuromuscular effects of ankle foot orthoses (AFOs) in computer simulations of gait.
    Crabtree CA, Higginson JS.
    Gait Posture; 2009 Jan; 29(1):65-70. PubMed ID: 18657977
    [Abstract] [Full Text] [Related]

  • 8. Analysis of stiffness reduction in varying curvature ankle foot orthoses.
    Braund M, Kroontje D, Brooks J, Self B, Aaron G, Bearden K.
    Biomed Sci Instrum; 2005 Jan; 41():19-24. PubMed ID: 15850076
    [Abstract] [Full Text] [Related]

  • 9. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.
    Schrank ES, Hitch L, Wallace K, Moore R, Stanhope SJ.
    J Biomech Eng; 2013 Oct 01; 135(10):101011-7. PubMed ID: 23774786
    [Abstract] [Full Text] [Related]

  • 10. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.
    Desloovere K, Molenaers G, Van Gestel L, Huenaerts C, Van Campenhout A, Callewaert B, Van de Walle P, Seyler J.
    Gait Posture; 2006 Oct 01; 24(2):142-51. PubMed ID: 16934470
    [Abstract] [Full Text] [Related]

  • 11. Passive-dynamic ankle-foot orthoses substitute for ankle strength while causing adaptive gait strategies: a feasibility study.
    Arch ES, Stanhope SJ.
    Ann Biomed Eng; 2015 Feb 01; 43(2):442-50. PubMed ID: 25023660
    [Abstract] [Full Text] [Related]

  • 12. Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework.
    Schrank ES, Stanhope SJ.
    J Rehabil Res Dev; 2011 Feb 01; 48(1):31-42. PubMed ID: 21328161
    [Abstract] [Full Text] [Related]

  • 13. The kinematic and kinetic effects of solid, hinged, and no ankle-foot orthoses on stair locomotion in healthy adults.
    Radtka SA, Oliveira GB, Lindstrom KE, Borders MD.
    Gait Posture; 2006 Oct 01; 24(2):211-8. PubMed ID: 16260141
    [Abstract] [Full Text] [Related]

  • 14. The influence of ankle-foot orthosis stiffness on walking performance in individuals with lower-limb impairments.
    Harper NG, Esposito ER, Wilken JM, Neptune RR.
    Clin Biomech (Bristol); 2014 Sep 01; 29(8):877-84. PubMed ID: 25193884
    [Abstract] [Full Text] [Related]

  • 15. Stress distribution in the ankle-foot orthosis used to correct pathological gait.
    Chu TM, Reddy NP.
    J Rehabil Res Dev; 1995 Nov 01; 32(4):349-60. PubMed ID: 8770799
    [Abstract] [Full Text] [Related]

  • 16. Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness.
    Ramsey JA.
    Prosthet Orthot Int; 2011 Mar 01; 35(1):54-69. PubMed ID: 21515890
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Effects of ankle-foot orthoses on ankle and foot kinematics in patient with ankle osteoarthritis.
    Huang YC, Harbst K, Kotajarvi B, Hansen D, Koff MF, Kitaoka HB, Kaufman KR.
    Arch Phys Med Rehabil; 2006 May 01; 87(5):710-6. PubMed ID: 16635635
    [Abstract] [Full Text] [Related]

  • 19. Design principles, manufacturing and evaluation techniques of custom dynamic ankle-foot orthoses: a review study.
    Rogati G, Caravaggi P, Leardini A.
    J Foot Ankle Res; 2022 May 19; 15(1):38. PubMed ID: 35585544
    [Abstract] [Full Text] [Related]

  • 20. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.
    Blaya JA, Herr H.
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar 19; 12(1):24-31. PubMed ID: 15068184
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.