These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
326 related items for PubMed ID: 18272917
1. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Krasnow M, Matthews M, Shackel K. J Exp Bot; 2008; 59(4):849-59. PubMed ID: 18272917 [Abstract] [Full Text] [Related]
2. Functional xylem in the post-veraison grape berry. Bondada BR, Matthews MA, Shackel KA. J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748 [Abstract] [Full Text] [Related]
3. Ripening grape berries remain hydraulically connected to the shoot. Keller M, Smith JP, Bondada BR. J Exp Bot; 2006 Nov; 57(11):2577-87. PubMed ID: 16868045 [Abstract] [Full Text] [Related]
4. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Davies C, Shin R, Liu W, Thomas MR, Schachtman DP. J Exp Bot; 2006 Nov; 57(12):3209-16. PubMed ID: 16936223 [Abstract] [Full Text] [Related]
6. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Chervin C, Tira-Umphon A, Terrier N, Zouine M, Severac D, Roustan JP. Physiol Plant; 2008 Nov; 134(3):534-46. PubMed ID: 18785902 [Abstract] [Full Text] [Related]
7. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries. Bindon KA, Dry PR, Loveys BR. J Agric Food Chem; 2007 May 30; 55(11):4493-500. PubMed ID: 17469842 [Abstract] [Full Text] [Related]
8. Grape berry plasma membrane proteome analysis and its differential expression during ripening. Zhang J, Ma H, Feng J, Zeng L, Wang Z, Chen S. J Exp Bot; 2008 May 30; 59(11):2979-90. PubMed ID: 18550598 [Abstract] [Full Text] [Related]
9. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. Hayes MA, Davies C, Dry IB. J Exp Bot; 2007 May 30; 58(8):1985-97. PubMed ID: 17452752 [Abstract] [Full Text] [Related]
10. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ, Sellés-Marchart S, Lijavetzky D, Pedreño MA, Bru-Martínez R. J Exp Bot; 2011 May 30; 62(8):2521-69. PubMed ID: 21576399 [Abstract] [Full Text] [Related]
11. Fruit ripening in Vitis vinifera: light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries. Koch A, Ebeler SE, Williams LE, Matthews MA. Physiol Plant; 2012 Jun 30; 145(2):275-85. PubMed ID: 22224579 [Abstract] [Full Text] [Related]
12. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. Cadot Y, Miñana-Castelló MT, Chevalier M. J Agric Food Chem; 2006 Nov 29; 54(24):9206-15. PubMed ID: 17117811 [Abstract] [Full Text] [Related]
13. Transcriptomics of the grape berry shrivel ripening disorder. Savoi S, Herrera JC, Forneck A, Griesser M. Plant Mol Biol; 2019 Jun 29; 100(3):285-301. PubMed ID: 30941542 [Abstract] [Full Text] [Related]
14. A grape berry (Vitis vinifera L.) cation/proton antiporter is associated with berry ripening. Hanana M, Cagnac O, Yamaguchi T, Hamdi S, Ghorbel A, Blumwald E. Plant Cell Physiol; 2007 Jun 29; 48(6):804-11. PubMed ID: 17463051 [Abstract] [Full Text] [Related]
15. Metabolism of geraniol in grape berry mesocarp of Vitis vinifera L. cv. Scheurebe: demonstration of stereoselective reduction, E/Z-isomerization, oxidation and glycosylation. Luan F, Mosandl A, Münch A, Wüst M. Phytochemistry; 2005 Feb 29; 66(3):295-303. PubMed ID: 15680986 [Abstract] [Full Text] [Related]
16. Loss of rachis cell viability is associated with ripening disorders in grapes. Hall GE, Bondada BR, Keller M. J Exp Bot; 2011 Jan 29; 62(3):1145-53. PubMed ID: 21071679 [Abstract] [Full Text] [Related]
17. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Peng FY, Reid KE, Liao N, Schlosser J, Lijavetzky D, Holt R, Martínez Zapater JM, Jones S, Marra M, Bohlmann J, Lund ST. Gene; 2007 Nov 01; 402(1-2):40-50. PubMed ID: 17761391 [Abstract] [Full Text] [Related]
18. Cell death in grape berries: varietal differences linked to xylem pressure and berry weight loss. Tilbrook J, Tyerman SD. Funct Plant Biol; 2008 May 01; 35(3):173-184. PubMed ID: 32688771 [Abstract] [Full Text] [Related]
19. The role of fruit exposure in the late season decline of grape berry mesocarp cell vitality. Clarke SJ, Rogiers SY. Plant Physiol Biochem; 2019 Feb 01; 135():69-76. PubMed ID: 30508706 [Abstract] [Full Text] [Related]
20. Accumulation and distribution pattern of macro- and microelements and trace elements in Vitis vinifera L. cv. Chardonnay berries. Bertoldi D, Larcher R, Bertamini M, Otto S, Concheri G, Nicolini G. J Agric Food Chem; 2011 Jul 13; 59(13):7224-36. PubMed ID: 21639148 [Abstract] [Full Text] [Related] Page: [Next] [New Search]