These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
183 related items for PubMed ID: 18273887
1. Differential distribution of SK channel subtypes in the brain of the weakly electric fish Apteronotus leptorhynchus. Ellis LD, Maler L, Dunn RJ. J Comp Neurol; 2008 Apr 20; 507(6):1964-78. PubMed ID: 18273887 [Abstract] [Full Text] [Related]
2. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact. Gu N, Hu H, Vervaeke K, Storm JF. J Neurophysiol; 2008 Nov 20; 100(5):2589-604. PubMed ID: 18684909 [Abstract] [Full Text] [Related]
3. Regulated expression of N-methyl-D-aspartate receptors and associated proteins in teleost electrosensory system and telencephalon. Harvey-Girard E, Dunn RJ, Maler L. J Comp Neurol; 2007 Dec 20; 505(6):644-68. PubMed ID: 17948874 [Abstract] [Full Text] [Related]
4. Dendritic SK channels convert NMDA-R-dependent LTD to burst timing-dependent plasticity. Harvey-Girard E, Maler L. J Neurophysiol; 2013 Dec 20; 110(12):2689-703. PubMed ID: 24047910 [Abstract] [Full Text] [Related]
5. Differences in Sodium Channel Densities in the Apical Dendrites of Pyramidal Cells of the Electrosensory Lateral Line Lobe. Motipally SI, Allen KM, Williamson DK, Marsat G. Front Neural Circuits; 2019 Dec 20; 13():41. PubMed ID: 31213991 [Abstract] [Full Text] [Related]
6. Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish. Maler L, Mugnaini E. J Comp Neurol; 1994 Jul 08; 345(2):224-52. PubMed ID: 7523460 [Abstract] [Full Text] [Related]
7. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Huang CG, Chacron MJ. Channels (Austin); 2017 Jul 04; 11(4):281-304. PubMed ID: 28277938 [Abstract] [Full Text] [Related]
8. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus. Smith GT, Unguez GA, Weber CM. J Neurobiol; 2006 Aug 04; 66(9):1011-31. PubMed ID: 16779822 [Abstract] [Full Text] [Related]
9. Distribution of muscarinic acetylcholine receptor mRNA in the brain of the weakly electric fish Apteronotus leptorhynchus. Toscano-Márquez B, Dunn RJ, Krahe R. J Comp Neurol; 2013 Apr 01; 521(5):1054-72. PubMed ID: 22911562 [Abstract] [Full Text] [Related]
10. Gap junction protein in weakly electric fish (Gymnotide): immunohistochemical localization with emphasis on structures of the electrosensory system. Yamamoto T, Maler L, Hertzberg EL, Nagy JI. J Comp Neurol; 1989 Nov 15; 289(3):509-36. PubMed ID: 2553783 [Abstract] [Full Text] [Related]
11. Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain. Chang SY, Zagha E, Kwon ES, Ozaita A, Bobik M, Martone ME, Ellisman MH, Heintz N, Rudy B. J Comp Neurol; 2007 Jun 20; 502(6):953-72. PubMed ID: 17444489 [Abstract] [Full Text] [Related]
12. Distribution and function of potassium channels in the electrosensory lateral line lobe of weakly electric apteronotid fish. Mehaffey WH, Fernandez FR, Rashid AJ, Dunn RJ, Turner RW. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun 20; 192(6):637-48. PubMed ID: 16425062 [Abstract] [Full Text] [Related]
13. Preferential assembly of heteromeric small conductance calcium-activated potassium channels. Church TW, Weatherall KL, Corrêa SA, Prole DL, Brown JT, Marrion NV. Eur J Neurosci; 2015 Feb 20; 41(3):305-15. PubMed ID: 25421315 [Abstract] [Full Text] [Related]
14. A prominent soma-dendritic distribution of Kv3.3 K+ channels in electrosensory and cerebellar neurons. Rashid AJ, Dunn RJ, Turner RW. J Comp Neurol; 2001 Dec 17; 441(3):234-47. PubMed ID: 11745647 [Abstract] [Full Text] [Related]
15. Over-expression of a mammalian small conductance calcium-activated K+ channel in Pichia pastoris: effects of trafficking signals and subunit fusions. Licata L, Haase W, Eckhardt-Strelau L, Parcej DN. Protein Expr Purif; 2006 May 17; 47(1):171-8. PubMed ID: 16290007 [Abstract] [Full Text] [Related]
16. Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps. Mehaffey WH, Maler L, Turner RW. J Neurophysiol; 2008 May 17; 99(5):2641-55. PubMed ID: 18367702 [Abstract] [Full Text] [Related]
17. SK channels in excitability, pacemaking and synaptic integration. Bond CT, Maylie J, Adelman JP. Curr Opin Neurobiol; 2005 Jun 17; 15(3):305-11. PubMed ID: 15922588 [Abstract] [Full Text] [Related]
18. Inositol 1,4,5-trisphosphate receptor localization in the brain of a weakly electric fish (Apteronotus leptorhynchus) with emphasis on the electrosensory system. Berman NJ, Hincke MT, Maler L. J Comp Neurol; 1995 Oct 23; 361(3):512-24. PubMed ID: 8550896 [Abstract] [Full Text] [Related]
19. Differential distribution of individual subunits of strongly inwardly rectifying potassium channels (Kir2 family) in rat brain. Prüss H, Derst C, Lommel R, Veh RW. Brain Res Mol Brain Res; 2005 Sep 13; 139(1):63-79. PubMed ID: 15936845 [Abstract] [Full Text] [Related]
20. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Sailer CA, Kaufmann WA, Marksteiner J, Knaus HG. Mol Cell Neurosci; 2004 Jul 13; 26(3):458-69. PubMed ID: 15234350 [Abstract] [Full Text] [Related] Page: [Next] [New Search]