These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 18278554
1. The effect of mechanical loading on the metabolism of growth plate chondrocytes. Ueki M, Tanaka N, Tanimoto K, Nishio C, Honda K, Lin YY, Tanne Y, Ohkuma S, Kamiya T, Tanaka E, Tanne K. Ann Biomed Eng; 2008 May; 36(5):793-800. PubMed ID: 18278554 [Abstract] [Full Text] [Related]
2. Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro. Bleuel J, Zaucke F, Brüggemann GP, Heilig J, Wolter ML, Hamann N, Firner S, Niehoff A. J Biomech Eng; 2015 Jun; 137(6):061009. PubMed ID: 25782164 [Abstract] [Full Text] [Related]
3. Mechanical regulation of terminal chondrocyte differentiation via RGD-CAP/beta ig-h3 induced by TGF-beta. Ohno S, Tanaka N, Ueki M, Honda K, Tanimoto K, Yoneno K, Ohno-Nakahara M, Fujimoto K, Kato Y, Tanne K. Connect Tissue Res; 2005 Jun; 46(4-5):227-34. PubMed ID: 16546826 [Abstract] [Full Text] [Related]
4. Regulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes. Xu T, Yang K, You H, Chen A, Wang J, Xu K, Gong C, Shao J, Ma Z, Guo F, Qi J. Bone; 2013 Oct; 56(2):304-11. PubMed ID: 23831868 [Abstract] [Full Text] [Related]
5. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles. Screen HR, Shelton JC, Bader DL, Lee DA. Biochem Biophys Res Commun; 2005 Oct 21; 336(2):424-9. PubMed ID: 16137647 [Abstract] [Full Text] [Related]
6. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Honda K, Ohno S, Tanimoto K, Ijuin C, Tanaka N, Doi T, Kato Y, Tanne K. Eur J Cell Biol; 2000 Sep 21; 79(9):601-9. PubMed ID: 11043401 [Abstract] [Full Text] [Related]
7. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ. J Biomech; 2004 May 21; 37(5):595-604. PubMed ID: 15046988 [Abstract] [Full Text] [Related]
8. Recombinant bone morphogenetic protein (BMP)-2 regulates costochondral growth plate chondrocytes and induces expression of BMP-2 and BMP-4 in a cell maturation-dependent manner. Erickson DM, Harris SE, Dean DD, Harris MA, Wozney JM, Boyan BD, Schwartz Z. J Orthop Res; 1997 May 21; 15(3):371-80. PubMed ID: 9246083 [Abstract] [Full Text] [Related]
9. ACTH enhances chondrogenesis in multipotential progenitor cells and matrix production in chondrocytes. Evans JF, Niu QT, Canas JA, Shen CL, Aloia JF, Yeh JK. Bone; 2004 Jul 21; 35(1):96-107. PubMed ID: 15207745 [Abstract] [Full Text] [Related]
10. The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Fan JC, Waldman SD. Ann Biomed Eng; 2010 Apr 21; 38(4):1672-82. PubMed ID: 20087771 [Abstract] [Full Text] [Related]
11. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Villanueva I, Weigel CA, Bryant SJ. Acta Biomater; 2009 Oct 21; 5(8):2832-46. PubMed ID: 19508905 [Abstract] [Full Text] [Related]
12. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA. Tissue Eng; 2004 Oct 21; 10(9-10):1323-31. PubMed ID: 15588393 [Abstract] [Full Text] [Related]
13. Applying an excessive mechanical stress alters the effect of subchondral osteoblasts on chondrocytes in a co-culture system. Lin YY, Tanaka N, Ohkuma S, Iwabuchi Y, Tanne Y, Kamiya T, Kunimatsu R, Huang YC, Yoshioka M, Mitsuyoshi T, Tanimoto K, Tanaka E, Tanne K. Eur J Oral Sci; 2010 Apr 21; 118(2):151-8. PubMed ID: 20487004 [Abstract] [Full Text] [Related]
14. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. Mackie EJ, Tatarczuch L, Mirams M. J Endocrinol; 2011 Nov 21; 211(2):109-21. PubMed ID: 21642379 [Abstract] [Full Text] [Related]
15. The effects of mechanical loading on the mRNA expression of growth-plate cells. Villemure I, Chung MA, Seck CS, Kimm MH, Matyas JR, Duncan NA. Stud Health Technol Inform; 2002 Nov 21; 91():114-8. PubMed ID: 15457706 [Abstract] [Full Text] [Related]
16. Effects of shear stress on articular chondrocyte metabolism. Lane Smith R, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ. Biorheology; 2000 Nov 21; 37(1-2):95-107. PubMed ID: 10912182 [Abstract] [Full Text] [Related]
17. Static compressive loading reduces the mRNA expression of type II and X collagen in rat growth-plate chondrocytes during postnatal growth. Villemure I, Chung MA, Seck CS, Kimm MH, Matyas JR, Duncan NA. Connect Tissue Res; 2005 Nov 21; 46(4-5):211-9. PubMed ID: 16546824 [Abstract] [Full Text] [Related]
18. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Nebelung S, Gavenis K, Lüring C, Zhou B, Mueller-Rath R, Stoffel M, Tingart M, Rath B. Ann Anat; 2012 Jul 21; 194(4):351-8. PubMed ID: 22429869 [Abstract] [Full Text] [Related]
19. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization. Amini S, Mortazavi F, Sun J, Levesque M, Hoemann CD, Villemure I. Biomech Model Mechanobiol; 2013 Jan 21; 12(1):67-78. PubMed ID: 22446833 [Abstract] [Full Text] [Related]