These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 18282222
1. Exercise-induced training effects on bone mineral content: a 7-year follow-up study with adolescent female gymnasts and runners. Pikkarainen E, Lehtonen-Veromaa M, Kautiainen H, Heinonen OJ, Viikari J, Möttönen T. Scand J Med Sci Sports; 2009 Apr; 19(2):166-73. PubMed ID: 18282222 [Abstract] [Full Text] [Related]
2. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. Robinson TL, Snow-Harter C, Taaffe DR, Gillis D, Shaw J, Marcus R. J Bone Miner Res; 1995 Jan; 10(1):26-35. PubMed ID: 7747628 [Abstract] [Full Text] [Related]
3. High-impact exercise promotes bone gain in well-trained female athletes. Taaffe DR, Robinson TL, Snow CM, Marcus R. J Bone Miner Res; 1997 Feb; 12(2):255-60. PubMed ID: 9041058 [Abstract] [Full Text] [Related]
4. Impact of detraining on bone loss in former collegiate female gymnasts. Kudlac J, Nichols DL, Sanborn CF, DiMarco NM. Calcif Tissue Int; 2004 Dec; 75(6):482-7. PubMed ID: 15365660 [Abstract] [Full Text] [Related]
5. Bone mineral accrual in 4- to 10-year-old precompetitive, recreational gymnasts: a 4-year longitudinal study. Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Baxter-Jones AD. J Bone Miner Res; 2011 Jun; 26(6):1313-20. PubMed ID: 21308773 [Abstract] [Full Text] [Related]
6. A prospective study of bone mass and body composition in female adolescent gymnasts. Laing EM, Massoni JA, Nickols-Richardson SM, Modlesky CM, O'Connor PJ, Lewis RD. J Pediatr; 2002 Aug; 141(2):211-6. PubMed ID: 12183716 [Abstract] [Full Text] [Related]
7. Does previous participation in high-impact training result in residual bone gain in growing girls? One year follow-up of a 9-month jumping intervention. Kontulainen SA, Kannus PA, Pasanen ME, Sievänen HT, Heinonen AO, Oja P, Vuori I. Int J Sports Med; 2002 Nov; 23(8):575-81. PubMed ID: 12439773 [Abstract] [Full Text] [Related]
8. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Ward KA, Roberts SA, Adams JE, Mughal MZ. Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561 [Abstract] [Full Text] [Related]
9. Maturity and activity-related differences in bone mineral density: Tanner I vs. II and gymnasts vs. non-gymnasts. Dowthwaite JN, DiStefano JG, Ploutz-Snyder RJ, Kanaley JA, Scerpella TA. Bone; 2006 Oct; 39(4):895-900. PubMed ID: 16757218 [Abstract] [Full Text] [Related]
10. Longitudinal bone mineral density changes in female child artistic gymnasts. Nickols-Richardson SM, O'Connor PJ, Shapses SA, Lewis RD. J Bone Miner Res; 1999 Jun; 14(6):994-1002. PubMed ID: 10352109 [Abstract] [Full Text] [Related]
11. Strength indices of the proximal femur and shaft in prepubertal female gymnasts. Faulkner RA, Forwood MR, Beck TJ, Mafukidze JC, Russell K, Wallace W. Med Sci Sports Exerc; 2003 Mar; 35(3):513-8. PubMed ID: 12618584 [Abstract] [Full Text] [Related]
12. Skull bone mass deficit in prepubertal highly-trained gymnast girls. Courteix D, Lespessailles E, Obert P, Benhamou CL. Int J Sports Med; 1999 Jul; 20(5):328-33. PubMed ID: 10452231 [Abstract] [Full Text] [Related]
13. The effects of gymnastics training on bone mineral density. Nichols DL, Sanborn CF, Bonnick SL, Ben-Ezra V, Gench B, DiMarco NM. Med Sci Sports Exerc; 1994 Oct; 26(10):1220-5. PubMed ID: 7799765 [Abstract] [Full Text] [Related]
14. Daily physical education in the school curriculum in prepubertal girls during 1 year is followed by an increase in bone mineral accrual and bone width--data from the prospective controlled Malmö pediatric osteoporosis prevention study. Valdimarsson O, Linden C, Johnell O, Gardsell P, Karlsson MK. Calcif Tissue Int; 2006 Feb; 78(2):65-71. PubMed ID: 16467972 [Abstract] [Full Text] [Related]
15. "Bounce at the Bell": a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. McKay HA, MacLean L, Petit M, MacKelvie-O'Brien K, Janssen P, Beck T, Khan KM. Br J Sports Med; 2005 Aug; 39(8):521-6. PubMed ID: 16046335 [Abstract] [Full Text] [Related]
16. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones AD. J Bone Miner Res; 2012 Jan; 27(1):104-10. PubMed ID: 21956460 [Abstract] [Full Text] [Related]
17. Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females. Laing EM, Wilson AR, Modlesky CM, O'Connor PJ, Hall DB, Lewis RD. J Bone Miner Res; 2005 Mar; 20(3):509-19. PubMed ID: 15746997 [Abstract] [Full Text] [Related]
18. Evidence of sustained skeletal benefits from impact-loading exercise in young females: a 3-year longitudinal study. Nurmi-Lawton JA, Baxter-Jones AD, Mirwald RL, Bishop JA, Taylor P, Cooper C, New SA. J Bone Miner Res; 2004 Feb; 19(2):314-22. PubMed ID: 14969402 [Abstract] [Full Text] [Related]
19. A 2-year school-based exercise programme in pre-pubertal boys induces skeletal benefits in lumbar spine. Alwis G, Linden C, Ahlborg HG, Dencker M, Gardsell P, Karlsson MK. Acta Paediatr; 2008 Nov; 97(11):1564-71. PubMed ID: 18671693 [Abstract] [Full Text] [Related]
20. Calcium supplementation and weight bearing physical activity--do they have a combined effect on the bone density of pre-pubertal children? Ward KA, Roberts SA, Adams JE, Lanham-New S, Mughal MZ. Bone; 2007 Oct; 41(4):496-504. PubMed ID: 17870038 [Abstract] [Full Text] [Related] Page: [Next] [New Search]