These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
11. Role of endogenous opiates and extracellular K+ accumulation in the inhibition of frog spinal reflexes by electrical skin stimulation. Syková E, Kríz N, Hájek I. Physiol Bohemoslov; 1985 Jan; 34(6):548-61. PubMed ID: 3003770 [Abstract] [Full Text] [Related]
12. Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ. Chvátal A, Anderová M, Syková E. J Neurosci Res; 2004 Dec 01; 78(5):668-82. PubMed ID: 15478195 [Abstract] [Full Text] [Related]
14. [Local spinal cord glucose utilization and extracellular potassium activity changes after spinal cord injury in rats]. Murai H, Itoh C, Wagai N, Nakamura T, Yamaura A, Makino H. No To Shinkei; 1991 Apr 01; 43(4):337-42. PubMed ID: 1888573 [Abstract] [Full Text] [Related]
15. Activity-related extracellular potassium transients in the neonatal rat spinal cord: an in vitro study. Walton KD, Chesler M. Neuroscience; 1988 Jun 01; 25(3):983-95. PubMed ID: 2457188 [Abstract] [Full Text] [Related]
16. Extracellular magnesium enhances the damage to locomotor networks produced by metabolic perturbation mimicking spinal injury in the neonatal rat spinal cord in vitro. Margaryan G, Mladinic M, Mattioli C, Nistri A. Neuroscience; 2009 Oct 06; 163(2):669-82. PubMed ID: 19591902 [Abstract] [Full Text] [Related]
17. Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices. Vargová L, Chvátal A, Anderová M, Kubinová S, Ziak D, Syková E. J Neurosci Res; 2001 Jul 15; 65(2):129-38. PubMed ID: 11438982 [Abstract] [Full Text] [Related]