These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 1828885

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Stimulus frequency and intensity: critical determinants of opioid enhancement or inhibition of evoked methionine-enkephalin release.
    Sublette E, Gintzler AR.
    Brain Res; 1992 Dec 18; 599(1):165-70. PubMed ID: 1337301
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Opioids can enhance and inhibit the electrically evoked release of methionine-enkephalin.
    Xu H, Smolens I, Gintzler AR.
    Brain Res; 1989 Dec 11; 504(1):36-42. PubMed ID: 2574620
    [Abstract] [Full Text] [Related]

  • 6. Effects of pertussis toxin on opioid regulation of catecholamine release from rat and guinea pig brain slices.
    Werling LL, McMahon PN, Cox BM.
    Naunyn Schmiedebergs Arch Pharmacol; 1989 May 11; 339(5):509-13. PubMed ID: 2549429
    [Abstract] [Full Text] [Related]

  • 7. Opioids can produce a concentration-dependent naloxone-reversible enhancement of inhibition of evoked enkephalin release.
    Gintzler AR, Xu H.
    NIDA Res Monogr; 1990 May 11; 105():27-33. PubMed ID: 1678862
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Cross-tolerance between mu- and kappa-opioid agonists in the guinea pig ileum myenteric plexus.
    Garaulet JV, Laorden ML, Milanés MV.
    J Pharmacol Exp Ther; 1994 Jun 11; 269(3):993-9. PubMed ID: 8014886
    [Abstract] [Full Text] [Related]

  • 11. Opioids mobilize calcium from inositol 1,4,5-trisphosphate-sensitive stores in NG108-15 cells.
    Jin W, Lee NM, Loh HH, Thayer SA.
    J Neurosci; 1994 Apr 11; 14(4):1920-9. PubMed ID: 8158247
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Inhibitory effects of opioids on voltage-dependent Ca(2+) channels and catecholamine secretion in cultured porcine adrenal chromaffin cells.
    Kitamura G, Ohta T, Kai T, Kon Y, Ito S.
    Brain Res; 2002 Jun 28; 942(1-2):11-22. PubMed ID: 12031848
    [Abstract] [Full Text] [Related]

  • 15. The kappa opioid receptor expressed on the mouse R1.1 thymoma cell line is coupled to adenylyl cyclase through a pertussis toxin-sensitive guanine nucleotide-binding regulatory protein.
    Lawrence DM, Bidlack JM.
    J Pharmacol Exp Ther; 1993 Sep 28; 266(3):1678-83. PubMed ID: 8103800
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Inhibition of exocrine pancreatic secretion by opiates is mediated by suppression of cholinergic transmission: characterization of receptor subtypes.
    Louie DS, Chen HT, Owyang C.
    J Pharmacol Exp Ther; 1988 Jul 28; 246(1):132-6. PubMed ID: 2455787
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Tonic pain perception in the mouse: differential modulation by three receptor-selective opioid agonists.
    Murray CW, Cowan A.
    J Pharmacol Exp Ther; 1991 Apr 28; 257(1):335-41. PubMed ID: 1850470
    [Abstract] [Full Text] [Related]

  • 20. Altered mu-opiate receptor-G protein signal transduction following chronic morphine exposure.
    Wang L, Gintzler AR.
    J Neurochem; 1997 Jan 28; 68(1):248-54. PubMed ID: 8978732
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.