These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
619 related items for PubMed ID: 18292563
61. Chlamydia muridarum-specific CD4 T-cell clones recognize infected reproductive tract epithelial cells in an interferon-dependent fashion. Jayarapu K, Kerr MS, Katschke A, Johnson RM. Infect Immun; 2009 Oct; 77(10):4469-79. PubMed ID: 19667042 [Abstract] [Full Text] [Related]
66. Comparative evaluation of the protective efficacy of two formulations of a recombinant Chlamydia abortus subunit candidate vaccine in a mouse model. Pan Q, Pais R, Ohandjo A, He C, He Q, Omosun Y, Igietseme JU, Eko FO. Vaccine; 2015 Apr 08; 33(15):1865-72. PubMed ID: 25698486 [Abstract] [Full Text] [Related]
71. Increased immunoaccessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with Chlamydia muridarum. Tifrea DF, Pal S, Popot JL, Cocco MJ, de la Maza LM. J Immunol; 2014 Jun 01; 192(11):5201-13. PubMed ID: 24778450 [Abstract] [Full Text] [Related]
72. A Vibrio cholerae ghost-based subunit vaccine induces cross-protective chlamydial immunity that is enhanced by CTA2B, the nontoxic derivative of cholera toxin. Ekong EE, Okenu DN, Mania-Pramanik J, He Q, Igietseme JU, Ananaba GA, Lyn D, Black C, Eko FO. FEMS Immunol Med Microbiol; 2009 Mar 01; 55(2):280-91. PubMed ID: 19040663 [Abstract] [Full Text] [Related]
73. Protective immunity against Chlamydia trachomatis can engage both CD4+ and CD8+ T cells and bridge the respiratory and genital mucosae. Nogueira CV, Zhang X, Giovannone N, Sennott EL, Starnbach MN. J Immunol; 2015 Mar 01; 194(5):2319-29. PubMed ID: 25637024 [Abstract] [Full Text] [Related]
74. Gamma interferon production by cytotoxic T lymphocytes is required for resolution of Chlamydia trachomatis infection. Lampe MF, Wilson CB, Bevan MJ, Starnbach MN. Infect Immun; 1998 Nov 01; 66(11):5457-61. PubMed ID: 9784557 [Abstract] [Full Text] [Related]
75. Aberrant contraction of antigen-specific CD4 T cells after infection in the absence of gamma interferon or its receptor. Haring JS, Harty JT. Infect Immun; 2006 Nov 01; 74(11):6252-63. PubMed ID: 16966404 [Abstract] [Full Text] [Related]
76. Pulmonary Chlamydia muridarum challenge activates lung interstitial macrophages which correlate with IFN-γ production and infection control in mice. Gracey E, Baglaenko Y, Prayitno N, Van Rooijen N, Akram A, Lin A, Chiu B, Inman RD. Eur J Immunol; 2015 Dec 01; 45(12):3417-30. PubMed ID: 26344246 [Abstract] [Full Text] [Related]
77. Dendritic cells pulsed with a recombinant chlamydial major outer membrane protein antigen elicit a CD4(+) type 2 rather than type 1 immune response that is not protective. Shaw J, Grund V, Durling L, Crane D, Caldwell HD. Infect Immun; 2002 Mar 01; 70(3):1097-105. PubMed ID: 11854188 [Abstract] [Full Text] [Related]
78. Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells. Hosey KL, Hu S, Derbigny WA. J Interferon Cytokine Res; 2015 Nov 01; 35(11):901-16. PubMed ID: 26262558 [Abstract] [Full Text] [Related]
79. Mice deficient in MyD88 Develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection. Chen L, Lei L, Chang X, Li Z, Lu C, Zhang X, Wu Y, Yeh IT, Zhong G. J Immunol; 2010 Mar 01; 184(5):2602-10. PubMed ID: 20124098 [Abstract] [Full Text] [Related]
80. In silico identification and in vivo analysis of a novel T-cell antigen from Chlamydia, NrdB. Barker CJ, Beagley KW, Hafner LM, Timms P. Vaccine; 2008 Mar 04; 26(10):1285-96. PubMed ID: 18261829 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]