These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
253 related items for PubMed ID: 18294624
1. Four acarviosin-containing oligosaccharides identified from Streptomyces coelicoflavus ZG0656 are potent inhibitors of alpha-amylase. Geng P, Qiu F, Zhu Y, Bai G. Carbohydr Res; 2008 Apr 07; 343(5):882-92. PubMed ID: 18294624 [Abstract] [Full Text] [Related]
2. Two novel aminooligosaccharides isolated from the culture of Streptomyces coelicoflavus ZG0656 as potent inhibitors of alpha-amylase. Geng P, Bai G. Carbohydr Res; 2008 Feb 25; 343(3):470-6. PubMed ID: 18054350 [Abstract] [Full Text] [Related]
3. Taxonomy of the Streptomyces strain ZG0656 that produces acarviostatin alpha-amylase inhibitors and analysis of their effects on blood glucose levels in mammalian systems. Geng P, Bai G, Shi Q, Zhang L, Gao Z, Zhang Q. J Appl Microbiol; 2009 Feb 25; 106(2):525-33. PubMed ID: 19054225 [Abstract] [Full Text] [Related]
6. Profiling of acarviostatin family secondary metabolites secreted by Streptomyces coelicoflavus ZG0656 using ultraperformance liquid chromatography coupled with electrospray ionization mass spectrometry. Geng P, Meng X, Bai G, Luo G. Anal Chem; 2008 Oct 01; 80(19):7554-61. PubMed ID: 18720947 [Abstract] [Full Text] [Related]
9. Structures of human pancreatic α-amylase in complex with acarviostatins: Implications for drug design against type II diabetes. Qin X, Ren L, Yang X, Bai F, Wang L, Geng P, Bai G, Shen Y. J Struct Biol; 2011 Apr 01; 174(1):196-202. PubMed ID: 21111049 [Abstract] [Full Text] [Related]
10. Comparative study of the inhibition of alpha-glucosidase, alpha-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine-glucose. Kim MJ, Lee SB, Lee HS, Lee SY, Baek JS, Kim D, Moon TW, Robyt JF, Park KH. Arch Biochem Biophys; 1999 Nov 15; 371(2):277-83. PubMed ID: 10545215 [Abstract] [Full Text] [Related]
11. Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family α-amylase inhibitors. Guo X, Geng P, Bai F, Bai G, Sun T, Li X, Shi L, Zhong Q. Lett Appl Microbiol; 2012 Aug 15; 55(2):162-9. PubMed ID: 22691180 [Abstract] [Full Text] [Related]
13. Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic alpha-amylase in complex with analogues and their elongated counterparts. Li C, Begum A, Numao S, Park KH, Withers SG, Brayer GD. Biochemistry; 2005 Mar 08; 44(9):3347-57. PubMed ID: 15736945 [Abstract] [Full Text] [Related]
15. Porcine pancreatic alpha-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (alpha-AI1) and structural changes in the alpha-amylase inhibitor complex. Santimone M, Koukiekolo R, Moreau Y, Le Berre V, Rougé P, Marchis-Mouren G, Desseaux V. Biochim Biophys Acta; 2004 Feb 12; 1696(2):181-90. PubMed ID: 14871659 [Abstract] [Full Text] [Related]
16. The catalytic mechanism of alpha-amylases based upon enzyme crystal structures and model building calculations. Mazur AK, Haser R, Payan F. Biochem Biophys Res Commun; 1994 Oct 14; 204(1):297-302. PubMed ID: 7945374 [Abstract] [Full Text] [Related]
19. Directed "in situ" inhibitor elongation as a strategy to structurally characterize the covalent glycosyl-enzyme intermediate of human pancreatic alpha-amylase. Zhang R, Li C, Williams LK, Rempel BP, Brayer GD, Withers SG. Biochemistry; 2009 Nov 17; 48(45):10752-64. PubMed ID: 19803533 [Abstract] [Full Text] [Related]