These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Evaluation of delocalized lipophilic cationic dyes as delivery vehicles for photosensitizers to mitochondria. Ngen EJ, Rajaputra P, You Y. Bioorg Med Chem; 2009 Sep 15; 17(18):6631-40. PubMed ID: 19692249 [Abstract] [Full Text] [Related]
23. Selective, cytotoxic organoruthenium(II) full-sandwich complexes: a structural, computational and in vitro biological study. Loughrey BT, Cunning BV, Healy PC, Brown CL, Parsons PG, Williams ML. Chem Asian J; 2012 Jan 02; 7(1):112-21. PubMed ID: 22095971 [Abstract] [Full Text] [Related]
24. Water soluble, core-modified porphyrins. 3. Synthesis, photophysical properties, and in vitro studies of photosensitization, uptake, and localization with carboxylic acid-substituted derivatives. You Y, Gibson SL, Hilf R, Davies SR, Oseroff AR, Roy I, Ohulchanskyy TY, Bergey EJ, Detty MR. J Med Chem; 2003 Aug 14; 46(17):3734-47. PubMed ID: 12904078 [Abstract] [Full Text] [Related]
25. Conjugation of a Ru(II) arene complex to neomycin or to guanidinoneomycin leads to compounds with differential cytotoxicities and accumulation between cancer and normal cells. Grau-Campistany A, Massaguer A, Carrion-Salip D, Barragán F, Artigas G, López-Senín P, Moreno V, Marchán V. Mol Pharm; 2013 May 06; 10(5):1964-76. PubMed ID: 23510087 [Abstract] [Full Text] [Related]
26. In vitro photodynamic effect of aluminum tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells. Maduray K, Odhav B, Nyokong T. Photodiagnosis Photodyn Ther; 2012 Mar 06; 9(1):32-9. PubMed ID: 22369726 [Abstract] [Full Text] [Related]
27. A fluorinated ruthenium porphyrin as a potential photodynamic therapy agent: synthesis, characterization, DNA binding, and melanoma cell studies. Rani-Beeram S, Meyer K, McCrate A, Hong Y, Nielsen M, Swavey S. Inorg Chem; 2008 Dec 01; 47(23):11278-83. PubMed ID: 18980373 [Abstract] [Full Text] [Related]
28. Synthesis and biological evaluation of new pentaphyrin macrocycles for photodynamic therapy. Comuzzi C, Cogoi S, Overhand M, Van der Marel GA, Overkleeft HS, Xodo LE. J Med Chem; 2006 Jan 12; 49(1):196-204. PubMed ID: 16392804 [Abstract] [Full Text] [Related]
29. Zinc(II) and copper(II) complexes of beta-substituted hydroxylporphyrins as tumor photosensitizers. Huang Q, Pan Z, Wang P, Chen Z, Zhang X, Xu H. Bioorg Med Chem Lett; 2006 Jun 01; 16(11):3030-3. PubMed ID: 16540316 [Abstract] [Full Text] [Related]
30. Selective cytotoxic Ru(II) arene Cp* complex salts [R-PhRuCp*](+)X(-) for X = BF4(-), PF6(-), and BPh4(-). Loughrey BT, Healy PC, Parsons PG, Williams ML. Inorg Chem; 2008 Oct 06; 47(19):8589-91. PubMed ID: 18783214 [Abstract] [Full Text] [Related]
31. Synthesis, characterization, and in vitro evaluation of novel ruthenium(II) eta6-arene imidazole complexes. Vock CA, Scolaro C, Phillips AD, Scopelliti R, Sava G, Dyson PJ. J Med Chem; 2006 Sep 07; 49(18):5552-61. PubMed ID: 16942028 [Abstract] [Full Text] [Related]
32. Novel 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine fused chlorins as very active photodynamic agents for melanoma cells. Pereira NA, Laranjo M, Pineiro M, Serra AC, Santos K, Teixo R, Abrantes AM, Gonçalves AC, Sarmento Ribeiro AB, Casalta-Lopes J, Botelho MF, Pinho e Melo TM. Eur J Med Chem; 2015 Oct 20; 103():374-80. PubMed ID: 26383124 [Abstract] [Full Text] [Related]
33. Theoretical study on the electronic excitations of a porphyrin-polypyridyl ruthenium(II) photosensitizer. Cárdenas-Jirón GI, Barboza CA, López R, Menéndez MI. J Phys Chem A; 2011 Nov 03; 115(43):11988-97. PubMed ID: 21910497 [Abstract] [Full Text] [Related]
34. Amide linkage isomerism as an activity switch for organometallic osmium and ruthenium anticancer complexes. van Rijt SH, Hebden AJ, Amaresekera T, Deeth RJ, Clarkson GJ, Parsons S, McGowan PC, Sadler PJ. J Med Chem; 2009 Dec 10; 52(23):7753-64. PubMed ID: 19791745 [Abstract] [Full Text] [Related]
35. An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells. Zhao X, Li M, Sun W, Fan J, Du J, Peng X. Chem Commun (Camb); 2018 Jun 21; 54(51):7038-7041. PubMed ID: 29873358 [Abstract] [Full Text] [Related]
36. The 2-aminoglucosamide motif improves cellular uptake and photodynamic activity of tetraphenylporphyrin. Di Stasio B, Frochot C, Dumas D, Even P, Zwier J, Müller A, Didelon J, Guillemin F, Viriot ML, Barberi-Heyob M. Eur J Med Chem; 2005 Nov 21; 40(11):1111-22. PubMed ID: 15963605 [Abstract] [Full Text] [Related]
37. Phototoxicity of a core-modified porphyrin and induction of apoptosis. You Y, Gibson SL, Detty MR. J Photochem Photobiol B; 2006 Dec 01; 85(3):155-62. PubMed ID: 16905327 [Abstract] [Full Text] [Related]
38. Maltol-derived ruthenium-cymene complexes with tumor inhibiting properties: the impact of ligand-metal bond stability on anticancer activity in vitro. Kandioller W, Hartinger CG, Nazarov AA, Bartel C, Skocic M, Jakupec MA, Arion VB, Keppler BK. Chemistry; 2009 Nov 16; 15(45):12283-91. PubMed ID: 19821465 [Abstract] [Full Text] [Related]
39. Dinuclear ruthenium(II) triple-stranded helicates: luminescent supramolecular cylinders that bind and coil DNA and exhibit activity against cancer cell lines. Pascu GI, Hotze AC, Sanchez-Cano C, Kariuki BM, Hannon MJ. Angew Chem Int Ed Engl; 2007 Nov 16; 46(23):4374-8. PubMed ID: 17477461 [No Abstract] [Full Text] [Related]
40. Sawhorse-type diruthenium tetracarbonyl complexes containing porphyrin-derived ligands as highly selective photosensitizers for female reproductive cancer cells. Schmitt F, Auzias M, Stepnicka P, Sei Y, Yamaguchi K, Süss-Fink G, Therrien B, Juillerat-Jeanneret L. J Biol Inorg Chem; 2009 Jun 16; 14(5):693-701. PubMed ID: 19241094 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]