These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
207 related items for PubMed ID: 18298156
1. Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. Fanourgakis GS, Xantheas SS. J Chem Phys; 2008 Feb 21; 128(7):074506. PubMed ID: 18298156 [Abstract] [Full Text] [Related]
2. The flexible, polarizable, thole-type interaction potential for water (TTM2-F) revisited. Fanourgakis GS, Xantheas SS. J Phys Chem A; 2006 Mar 23; 110(11):4100-6. PubMed ID: 16539435 [Abstract] [Full Text] [Related]
3. Clusters of classical water models. Kiss PT, Baranyai A. J Chem Phys; 2009 Nov 28; 131(20):204310. PubMed ID: 19947683 [Abstract] [Full Text] [Related]
4. Accurate ab initio and "hybrid" potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer. Shank A, Wang Y, Kaledin A, Braams BJ, Bowman JM. J Chem Phys; 2009 Apr 14; 130(14):144314. PubMed ID: 19368452 [Abstract] [Full Text] [Related]
5. A quantitative account of quantum effects in liquid water. Fanourgakis GS, Schenter GK, Xantheas SS. J Chem Phys; 2006 Oct 14; 125(14):141102. PubMed ID: 17042571 [Abstract] [Full Text] [Related]
6. Insights in quantum dynamical effects in the infrared spectroscopy of liquid water from a semiclassical study with an ab initio-based flexible and polarizable force field. Liu J, Miller WH, Fanourgakis GS, Xantheas SS, Imoto S, Saito S. J Chem Phys; 2011 Dec 28; 135(24):244503. PubMed ID: 22225165 [Abstract] [Full Text] [Related]
7. The bend angle of water in ice Ih and liquid water: The significance of implementing the nonlinear monomer dipole moment surface in classical interaction potentials. Fanourgakis GS, Xantheas SS. J Chem Phys; 2006 May 07; 124(17):174504. PubMed ID: 16689580 [Abstract] [Full Text] [Related]
8. POLIR: polarizable, flexible, transferable water potential optimized for IR spectroscopy. Mankoo PK, Keyes T. J Chem Phys; 2008 Jul 21; 129(3):034504. PubMed ID: 18647028 [Abstract] [Full Text] [Related]
9. Polarizable and flexible model for ethanol. Wang S, Cann NM. J Chem Phys; 2007 Jun 07; 126(21):214502. PubMed ID: 17567203 [Abstract] [Full Text] [Related]
10. Monte Carlo simulations of critical cluster sizes and nucleation rates of water. Merikanto J, Vehkamaki H, Zapadinsky E. J Chem Phys; 2004 Jul 08; 121(2):914-24. PubMed ID: 15260623 [Abstract] [Full Text] [Related]
11. Hybrid diatomics-in-molecules-based quantum mechanical/molecular mechanical approach applied to the modeling of structures and spectra of mixed molecular clusters Arn(HCl)m and Arn(HF)m. Bochenkova AV, Suhm MA, Granovsky AA, Nemukhin AV. J Chem Phys; 2004 Feb 22; 120(8):3732-43. PubMed ID: 15268536 [Abstract] [Full Text] [Related]
12. Communication: The effect of dispersion corrections on the melting temperature of liquid water. Yoo S, Xantheas SS. J Chem Phys; 2011 Mar 28; 134(12):121105. PubMed ID: 21456638 [Abstract] [Full Text] [Related]
14. Quantum effects in liquid water and ice: model dependence. Hernández de la Peña L, Kusalik PG. J Chem Phys; 2006 Aug 07; 125(5):054512. PubMed ID: 16942231 [Abstract] [Full Text] [Related]
18. Water models based on a single potential energy surface and different molecular degrees of freedom. Saint-Martin H, Hernández-Cobos J, Ortega-Blake I. J Chem Phys; 2005 Jun 08; 122(22):224509. PubMed ID: 15974693 [Abstract] [Full Text] [Related]