These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
302 related items for PubMed ID: 18305037
1. NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens. Wasilenko JL, Lee CW, Sarmento L, Spackman E, Kapczynski DR, Suarez DL, Pantin-Jackwood MJ. J Virol; 2008 May; 82(9):4544-53. PubMed ID: 18305037 [Abstract] [Full Text] [Related]
4. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, Wang X, Yu K, Bu Z, Chen H. J Virol; 2006 Nov; 80(22):11115-23. PubMed ID: 16971424 [Abstract] [Full Text] [Related]
5. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Wasilenko JL, Sarmento L, Pantin-Jackwood MJ. Arch Virol; 2009 Nov; 154(6):969-79. PubMed ID: 19475480 [Abstract] [Full Text] [Related]
6. Amino acid substitutions in PB1 of avian influenza viruses influence pathogenicity and transmissibility in chickens. Suzuki Y, Uchida Y, Tanikawa T, Maeda N, Takemae N, Saito T. J Virol; 2014 Oct; 88(19):11130-9. PubMed ID: 25031333 [Abstract] [Full Text] [Related]
7. The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1, and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from influenza A/California/07/2009 and A/WSN/33 viruses. Broadbent AJ, Santos CP, Godbout RA, Subbarao K. J Virol; 2014 Nov; 88(21):12339-47. PubMed ID: 25122786 [Abstract] [Full Text] [Related]
8. Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. Chen LM, Davis CT, Zhou H, Cox NJ, Donis RO. PLoS Pathog; 2008 May 23; 4(5):e1000072. PubMed ID: 18497857 [Abstract] [Full Text] [Related]
9. The avian influenza virus nucleoprotein gene and a specific constellation of avian and human virus polymerase genes each specify attenuation of avian-human influenza A/Pintail/79 reassortant viruses for monkeys. Snyder MH, Buckler-White AJ, London WT, Tierney EL, Murphy BR. J Virol; 1987 Sep 23; 61(9):2857-63. PubMed ID: 2441080 [Abstract] [Full Text] [Related]
10. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Long JX, Peng DX, Liu YL, Wu YT, Liu XF. Virus Genes; 2008 Jun 23; 36(3):471-8. PubMed ID: 18317917 [Abstract] [Full Text] [Related]
11. Single gene reassortment of highly pathogenic avian influenza A H5N1 in the low pathogenic H9N2 backbone and its impact on pathogenicity and infectivity of novel reassortant viruses. Moatasim Y, Kandeil A, Mostafa A, Elghaffar SKA, El Shesheny R, Elwahy AHM, Ali MA. Arch Virol; 2017 Oct 23; 162(10):2959-2969. PubMed ID: 28620809 [Abstract] [Full Text] [Related]
12. Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human respiratory cells. Danzy S, Studdard LR, Manicassamy B, Solorzano A, Marshall N, García-Sastre A, Steel J, Lowen AC. J Virol; 2014 Nov 23; 88(22):13436-46. PubMed ID: 25210184 [Abstract] [Full Text] [Related]
13. The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. Hu J, Hu Z, Song Q, Gu M, Liu X, Wang X, Hu S, Chen C, Liu H, Liu W, Chen S, Peng D, Liu X. J Virol; 2013 Mar 23; 87(5):2660-72. PubMed ID: 23255810 [Abstract] [Full Text] [Related]
14. Effects of different polymerases of avian influenza viruses on the growth and pathogenicity of A/Puerto Rico/8/1934 (H1N1)-derived reassorted viruses. Kim IH, Choi JG, Lee YJ, Kwon HJ, Kim JH. Vet Microbiol; 2014 Jan 10; 168(1):41-9. PubMed ID: 24296300 [Abstract] [Full Text] [Related]
15. Differential replication characteristic of reassortant avian influenza A viruses H5N8 clade 2.3.4.4b in Madin-Darby canine kidney cell. Yehia N, Rabie N, Adel A, Mossad Z, Nagshabandi MK, Alharbi MT, El-Saadony MT, El-Tarabily KA, Erfan A. Poult Sci; 2023 Jul 10; 102(7):102685. PubMed ID: 37267711 [Abstract] [Full Text] [Related]
16. Amino acid changes in the influenza A virus PA protein that attenuate avian H5N1 viruses in mammals. Fan S, Hatta M, Kim JH, Le MQ, Neumann G, Kawaoka Y. J Virol; 2014 Dec 10; 88(23):13737-46. PubMed ID: 25231317 [Abstract] [Full Text] [Related]
17. Virulence and genetic compatibility of polymerase reassortant viruses derived from the pandemic (H1N1) 2009 influenza virus and circulating influenza A viruses. Song MS, Pascua PN, Lee JH, Baek YH, Park KJ, Kwon HI, Park SJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK. J Virol; 2011 Jul 10; 85(13):6275-86. PubMed ID: 21507962 [Abstract] [Full Text] [Related]
18. siRNAs targeting PB2 and NP genes potentially inhibit replication of Highly Pathogenic H5N1 Avian Influenza Virus. Behera P, Nagarajan S, Murugkar HV, Kalaiyarasu S, Prakash A, Gothalwal R, Dubey SC, Kulkarni DD, Tosh C. J Biosci; 2015 Jun 10; 40(2):233-40. PubMed ID: 25963253 [Abstract] [Full Text] [Related]
19. The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus. Cui H, Che G, de Jong MCM, Li X, Liu Q, Yang J, Teng Q, Li Z, Beerens N. Virol J; 2022 Jan 25; 19(1):20. PubMed ID: 35078489 [Abstract] [Full Text] [Related]
20. Continued Evolution of H5Nx Avian Influenza Viruses in Bangladeshi Live Poultry Markets: Pathogenic Potential in Poultry and Mammalian Models. El-Shesheny R, Franks J, Turner J, Seiler P, Walker D, Friedman K, Mukherjee N, Kercher L, Hasan MK, Feeroz MM, Krauss S, Vogel P, McKenzie P, Barman S, Webby RJ, Webster RG. J Virol; 2020 Nov 09; 94(23):. PubMed ID: 32907981 [Abstract] [Full Text] [Related] Page: [Next] [New Search]