These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 18305933

  • 1. Vertical perturbations of human gait: organisation and adaptation of leg muscle responses.
    Bachmann V, Müller R, van Hedel HJ, Dietz V.
    Exp Brain Res; 2008 Mar; 186(1):123-30. PubMed ID: 18305933
    [Abstract] [Full Text] [Related]

  • 2. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR, Allum JH, Carpenter MG, Verschuuren JJ, Honegger F.
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [Abstract] [Full Text] [Related]

  • 6. Adaptive behaviour of the spinal cord in the transition from quiet stance to walking.
    Serrao M, Ranavolo A, Andersen OK, Conte C, Don R, Cortese F, Mari S, Draicchio F, Padua L, Sandrini G, Pierelli F.
    BMC Neurosci; 2012 Jul 16; 13():80. PubMed ID: 22800397
    [Abstract] [Full Text] [Related]

  • 7. Patterns of whole-body muscle activations following vertical perturbations during standing and walking.
    Cano Porras D, Jacobs JV, Inzelberg R, Bahat Y, Zeilig G, Plotnik M.
    J Neuroeng Rehabil; 2021 May 06; 18(1):75. PubMed ID: 33957953
    [Abstract] [Full Text] [Related]

  • 8. Loading during the stance phase of walking in humans increases the extensor EMG amplitude but does not change the duration of the step cycle.
    Stephens MJ, Yang JF.
    Exp Brain Res; 1999 Feb 06; 124(3):363-70. PubMed ID: 9989442
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Preserved gait kinematics during controlled body unloading.
    Awai L, Franz M, Easthope CS, Vallery H, Curt A, Bolliger M.
    J Neuroeng Rehabil; 2017 Apr 04; 14(1):25. PubMed ID: 28376829
    [Abstract] [Full Text] [Related]

  • 11. Early corrective reactions of the leg to perturbations at the torso during walking in humans.
    Misiaszek JE, Stephens MJ, Yang JF, Pearson KG.
    Exp Brain Res; 2000 Apr 04; 131(4):511-23. PubMed ID: 10803419
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Interlimb coordination of leg-muscle activation during perturbation of stance in humans.
    Dietz V, Horstmann GA, Berger W.
    J Neurophysiol; 1989 Sep 04; 62(3):680-93. PubMed ID: 2769353
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Leg muscle activation during gait in Parkinson's disease: adaptation and interlimb coordination.
    Dietz V, Zijlstra W, Prokop T, Berger W.
    Electroencephalogr Clin Neurophysiol; 1995 Dec 04; 97(6):408-15. PubMed ID: 8536593
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Developmental changes in compensatory responses to unexpected resistance of leg lift during gait initiation.
    Woollacott M, Assaiante C.
    Exp Brain Res; 2002 Jun 04; 144(3):385-96. PubMed ID: 12021820
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA, Buford JA, Smith JL.
    J Neurophysiol; 1996 Feb 04; 75(2):832-42. PubMed ID: 8714656
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.