These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 18310353

  • 1. The heterotrophic dinoflagellate Crypthecodinium cohnii defines a model genetic system to investigate cytoplasmic starch synthesis.
    Deschamps P, Guillebeault D, Devassine J, Dauvillée D, Haebel S, Steup M, Buléon A, Putaux JL, Slomianny MC, Colleoni C, Devin A, Plancke C, Tomavo S, Derelle E, Moreau H, Ball S.
    Eukaryot Cell; 2008 May; 7(5):872-80. PubMed ID: 18310353
    [Abstract] [Full Text] [Related]

  • 2. Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii.
    Dauvillée D, Deschamps P, Ral JP, Plancke C, Putaux JL, Devassine J, Durand-Terrasson A, Devin A, Ball SG.
    Proc Natl Acad Sci U S A; 2009 Dec 15; 106(50):21126-30. PubMed ID: 19940244
    [Abstract] [Full Text] [Related]

  • 3. Pathway of cytosolic starch synthesis in the model glaucophyte Cyanophora paradoxa.
    Plancke C, Colleoni C, Deschamps P, Dauvillée D, Nakamura Y, Haebel S, Ritte G, Steup M, Buléon A, Putaux JL, Dupeyre D, d'Hulst C, Ral JP, Löffelhardt W, Ball SG.
    Eukaryot Cell; 2008 Feb 15; 7(2):247-57. PubMed ID: 18055913
    [Abstract] [Full Text] [Related]

  • 4. Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta.
    Deschamps P, Haferkamp I, Dauvillée D, Haebel S, Steup M, Buléon A, Putaux JL, Colleoni C, d'Hulst C, Plancke C, Gould S, Maier U, Neuhaus HE, Ball S.
    Eukaryot Cell; 2006 Jun 15; 5(6):954-63. PubMed ID: 16757743
    [Abstract] [Full Text] [Related]

  • 5. Molecular characterization of iron-containing superoxide dismutases in the heterotrophic dinoflagellate Crypthecodinium cohnii.
    Dufernez F, Derelle E, Noël C, Sanciu G, Mantini C, Dive D, Soyer-Gobillard MO, Capron M, Pierce RJ, Wintjens R, Guillebault D, Viscogliosi E.
    Protist; 2008 Apr 15; 159(2):223-38. PubMed ID: 18276189
    [Abstract] [Full Text] [Related]

  • 6. Purification and characterisation of a novel starch synthase selective for uridine 5'-diphosphate glucose from the red alga Gracilaria tenuistipitata.
    Nyvall P, Pelloux J, Davies HV, Pedersén M, Viola R.
    Planta; 1999 Jul 15; 209(1):143-52. PubMed ID: 10467041
    [Abstract] [Full Text] [Related]

  • 7. Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry.
    Coppin A, Varré JS, Lienard L, Dauvillée D, Guérardel Y, Soyer-Gobillard MO, Buléon A, Ball S, Tomavo S.
    J Mol Evol; 2005 Feb 15; 60(2):257-67. PubMed ID: 15785854
    [Abstract] [Full Text] [Related]

  • 8. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis.
    Zhang X, Szydlowski N, Delvallé D, D'Hulst C, James MG, Myers AM.
    BMC Plant Biol; 2008 Sep 23; 8():96. PubMed ID: 18811962
    [Abstract] [Full Text] [Related]

  • 9. Starch metabolism in leaves.
    Orzechowski S.
    Acta Biochim Pol; 2008 Sep 23; 55(3):435-45. PubMed ID: 18787712
    [Abstract] [Full Text] [Related]

  • 10. Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin.
    Delrue B, Fontaine T, Routier F, Decq A, Wieruszeski JM, Van Den Koornhuyse N, Maddelein ML, Fournet B, Ball S.
    J Bacteriol; 1992 Jun 23; 174(11):3612-20. PubMed ID: 1592815
    [Abstract] [Full Text] [Related]

  • 11. Variation in storage alpha-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium.
    Shimonaga T, Fujiwara S, Kaneko M, Izumo A, Nihei S, Francisco PB, Satoh A, Fujita N, Nakamura Y, Tsuzuki M.
    Mar Biotechnol (NY); 2007 Jun 23; 9(2):192-202. PubMed ID: 17160635
    [Abstract] [Full Text] [Related]

  • 12. Granule-bound starch synthase I. A major enzyme involved in the biogenesis of B-crystallites in starch granules.
    Wattebled F, Buléon A, Bouchet B, Ral JP, Liénard L, Delvallé D, Binderup K, Dauvillée D, Ball S, D'Hulst C.
    Eur J Biochem; 2002 Aug 23; 269(15):3810-20. PubMed ID: 12153578
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The biosynthesis of starch granules.
    Smith AM.
    Biomacromolecules; 2001 Aug 23; 2(2):335-41. PubMed ID: 11749190
    [Abstract] [Full Text] [Related]

  • 15. Analyses of starch biosynthetic protein complexes and starch properties from developing mutant rice seeds with minimal starch synthase activities.
    Hayashi M, Crofts N, Oitome NF, Fujita N.
    BMC Plant Biol; 2018 Apr 10; 18(1):59. PubMed ID: 29636002
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. CBM20CP, a novel functional protein of starch metabolism in green algae.
    Hedin N, Velazquez MB, Barchiesi J, Gomez-Casati DF, Busi MV.
    Plant Mol Biol; 2022 Mar 10; 108(4-5):363-378. PubMed ID: 34546521
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The primitive rhodophyte Cyanidioschyzon merolae contains a semiamylopectin-type, but not an amylose-type, alpha-glucan.
    Hirabaru C, Izumo A, Fujiwara S, Tadokoro Y, Shimonaga T, Konishi M, Yoshida M, Fujita N, Nakamura Y, Yoshida M, Kuroiwa T, Tsuzuki M.
    Plant Cell Physiol; 2010 May 10; 51(5):682-93. PubMed ID: 20385610
    [Abstract] [Full Text] [Related]

  • 20. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.
    Seung D, Soyk S, Coiro M, Maier BA, Eicke S, Zeeman SC.
    PLoS Biol; 2015 Feb 10; 13(2):e1002080. PubMed ID: 25710501
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.