These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Robel I, Subramanian V, Kuno M, Kamat PV. J Am Chem Soc; 2006 Feb 22; 128(7):2385-93. PubMed ID: 16478194 [Abstract] [Full Text] [Related]
6. Sea urchin TiO2-nanoparticle hybrid composite photoelectrodes for CdS/CdSe/ZnS quantum-dot-sensitized solar cells. Kong EH, Chang YJ, Park YC, Yoon YH, Park HJ, Jang HM. Phys Chem Chem Phys; 2012 Apr 07; 14(13):4620-5. PubMed ID: 22362094 [Abstract] [Full Text] [Related]
11. Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells. Kim J, Choi S, Noh J, Yoon S, Lee S, Noh T, Frank AJ, Hong K. Langmuir; 2009 May 05; 25(9):5348-51. PubMed ID: 19249822 [Abstract] [Full Text] [Related]
12. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA. Langmuir; 2007 Nov 20; 23(24):12445-9. PubMed ID: 17958387 [Abstract] [Full Text] [Related]
13. Photo-gated charge transfer of organized assemblies of CdSe quantum dots. Pradhan S, Chen S, Wang S, Zou J, Kauzlarich SM, Louie AY. Langmuir; 2006 Jan 17; 22(2):787-93. PubMed ID: 16401132 [Abstract] [Full Text] [Related]
18. Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties. Kang Q, Liu S, Yang L, Cai Q, Grimes CA. ACS Appl Mater Interfaces; 2011 Mar 17; 3(3):746-9. PubMed ID: 21306125 [Abstract] [Full Text] [Related]
20. Near infrared absorption of CdSe(x)Te(1-x) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X. ACS Nano; 2013 Jun 25; 7(6):5215-22. PubMed ID: 23705771 [Abstract] [Full Text] [Related] Page: [Next] [New Search]