These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 18312271

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. TusA (YhhP) and IscS are required for molybdenum cofactor-dependent base-analog detoxification.
    Kozmin SG, Stepchenkova EI, Schaaper RM.
    Microbiologyopen; 2013 Oct; 2(5):743-55. PubMed ID: 23894086
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function.
    Kozmin SG, Schaaper RM.
    Mutat Res; 2007 Jun 01; 619(1-2):9-15. PubMed ID: 17349664
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Crystal structure of the hydroxylaminopurine resistance protein, YiiM, and its putative molybdenum cofactor-binding catalytic site.
    Namgung B, Kim JH, Song WS, Yoon SI.
    Sci Rep; 2018 Feb 19; 8(1):3304. PubMed ID: 29459651
    [Abstract] [Full Text] [Related]

  • 7. The Chlamydomonas reinhardtii molybdenum cofactor enzyme crARC has a Zn-dependent activity and protein partners similar to those of its human homologue.
    Chamizo-Ampudia A, Galvan A, Fernandez E, Llamas A.
    Eukaryot Cell; 2011 Oct 19; 10(10):1270-82. PubMed ID: 21803866
    [Abstract] [Full Text] [Related]

  • 8. Hypersensitivity of Escherichia coli Delta(uvrB-bio) mutants to 6-hydroxylaminopurine and other base analogs is due to a defect in molybdenum cofactor biosynthesis.
    Kozmin SG, Pavlov YI, Dunn RL, Schaaper RM.
    J Bacteriol; 2000 Jun 19; 182(12):3361-7. PubMed ID: 10852865
    [Abstract] [Full Text] [Related]

  • 9. Catalytic electrochemistry of the bacterial Molybdoenzyme YcbX.
    Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV.
    Biochim Biophys Acta Bioenerg; 2022 Oct 01; 1863(7):148579. PubMed ID: 35640667
    [Abstract] [Full Text] [Related]

  • 10. A critical role for the putative NCS2 nucleobase permease YjcD in the sensitivity of Escherichia coli to cytotoxic and mutagenic purine analogs.
    Kozmin SG, Stepchenkova EI, Chow SC, Schaaper RM.
    mBio; 2013 Oct 29; 4(6):e00661-13. PubMed ID: 24169576
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. The twists and turns of enzyme function.
    White RH.
    J Bacteriol; 2010 Apr 29; 192(8):2023-5. PubMed ID: 20154124
    [No Abstract] [Full Text] [Related]

  • 13. Base analog N6-hydroxylaminopurine mutagenesis in Escherichia coli: genetic control and molecular specificity.
    Pavlov YI, Suslov VV, Shcherbakova PV, Kunkel TA, Ono A, Matsuda A, Schaaper RM.
    Mutat Res; 1996 Oct 25; 357(1-2):1-15. PubMed ID: 8876675
    [Abstract] [Full Text] [Related]

  • 14. Molybdenum co-factor biosynthesis: the Arabidopsis thaliana cDNA cnx1 encodes a multifunctional two-domain protein homologous to a mammalian neuroprotein, the insect protein Cinnamon and three Escherichia coli proteins.
    Stallmeyer B, Nerlich A, Schiemann J, Brinkmann H, Mendel RR.
    Plant J; 1995 Nov 25; 8(5):751-62. PubMed ID: 8528286
    [Abstract] [Full Text] [Related]

  • 15. Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase.
    Neumann M, Schulte M, Jünemann N, Stöcklein W, Leimkühler S.
    J Biol Chem; 2006 Jun 09; 281(23):15701-8. PubMed ID: 16597619
    [Abstract] [Full Text] [Related]

  • 16. Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli.
    Zupok A, Gorka M, Siemiatkowska B, Skirycz A, Leimkühler S.
    J Bacteriol; 2019 Sep 01; 201(17):. PubMed ID: 31235512
    [Abstract] [Full Text] [Related]

  • 17. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli.
    Reschke S, Duffus BR, Schrapers P, Mebs S, Teutloff C, Dau H, Haumann M, Leimkühler S.
    Biochemistry; 2019 Apr 30; 58(17):2228-2242. PubMed ID: 30945846
    [Abstract] [Full Text] [Related]

  • 18. Electrochemically driven catalysis of the bacterial molybdenum enzyme YiiM.
    Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV.
    Biochim Biophys Acta Bioenerg; 2022 Mar 01; 1863(3):148523. PubMed ID: 34921810
    [Abstract] [Full Text] [Related]

  • 19. Mutational analysis of Escherichia coli MoeA: two functional activities map to the active site cleft.
    Nichols JD, Xiang S, Schindelin H, Rajagopalan KV.
    Biochemistry; 2007 Jan 09; 46(1):78-86. PubMed ID: 17198377
    [Abstract] [Full Text] [Related]

  • 20. Genetic analysis of tellurate reduction reveals the selenate/tellurate reductase genes ynfEF and the transcriptional regulation of moeA by NsrR in Escherichia coli.
    Fujita D, Tobe R, Tajima H, Anma Y, Nishida R, Mihara H.
    J Biochem; 2021 Apr 29; 169(4):477-484. PubMed ID: 33136147
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.