These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


113 related items for PubMed ID: 18312721

  • 21. Bismuth Oxide Nanoparticles Partially Substituted with EuIII, MnIV, and SiIV: Structural, Spectroscopic, and Optical Findings.
    Ortiz-Quiñonez JL, Zumeta-Dubé I, Díaz D, Nava-Etzana N, Cruz-Zaragoza E, Santiago-Jacinto P.
    Inorg Chem; 2017 Mar 20; 56(6):3394-3403. PubMed ID: 28252972
    [Abstract] [Full Text] [Related]

  • 22. Low-temperature vapour-liquid-solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment.
    Bettge M, MacLaren S, Burdin S, Wen JG, Abraham D, Petrov I, Sammann E.
    Nanotechnology; 2009 Mar 18; 20(11):115607. PubMed ID: 19420447
    [Abstract] [Full Text] [Related]

  • 23. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA, Scholz R, Syrowatka F, Falk F, Gösele U, Christiansen SH.
    Nanotechnology; 2009 Oct 07; 20(40):405607. PubMed ID: 19738306
    [Abstract] [Full Text] [Related]

  • 24. Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts.
    Yu L, O'Donnell B, Alet PJ, Conesa-Boj S, Peiró F, Arbiol J, Cabarrocas PR.
    Nanotechnology; 2009 Jun 03; 20(22):225604. PubMed ID: 19436096
    [Abstract] [Full Text] [Related]

  • 25. In situ TEM observation of the growth and decomposition of monoclinic W(18)O(49) nanowires.
    Chen CL, Mori H.
    Nanotechnology; 2009 Jul 15; 20(28):285604. PubMed ID: 19550017
    [Abstract] [Full Text] [Related]

  • 26. Synthesis of sub-20-nm-sized bismuth 1-D structures using gallium-bismuth systems.
    Bhimarasetti G, Sunkara MK.
    J Phys Chem B; 2005 Sep 01; 109(34):16219-22. PubMed ID: 16853061
    [Abstract] [Full Text] [Related]

  • 27. Structural Characteristics of the Si Whiskers Grown by Ni-Metal-Induced-Lateral-Crystallization.
    Pécz B, Vouroutzis N, Radnóczi GZ, Frangis N, Stoemenos J.
    Nanomaterials (Basel); 2021 Jul 22; 11(8):. PubMed ID: 34443708
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. In situ observation of oxidation of liquid droplets of tin and melting behavior of a tin particle covered with a tin oxide layer.
    Mima T, Takeuchi H, Arai S, Kishita K, Kuroda K, Saka H.
    Microsc Res Tech; 2009 Mar 22; 72(3):223-31. PubMed ID: 19156703
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. In situ study of epitaxial growth of ZnO nanowires at the junctions of nanowall networks on zinc particles.
    Zhang X, Shan X, Zhang J, Chen L, Xu J, You L, Yu D.
    Micron; 2009 Apr 22; 40(3):302-7. PubMed ID: 19121947
    [Abstract] [Full Text] [Related]

  • 32. Catalytic growth of metallic tungsten whiskers based on the vapor-solid-solid mechanism.
    Wang SL, He YH, Zou J, Wang Y, Huang H, Huang BY, Liu CT, Liaw PK.
    Nanotechnology; 2008 Aug 27; 19(34):345604. PubMed ID: 21730653
    [Abstract] [Full Text] [Related]

  • 33. Confined-Melting-Assisted Synthesis of Bismuth Silicate Glass-Ceramic Nanoparticles: Formation and Optical Thermometry Investigation.
    Back M, Casagrande E, Trave E, Cristofori D, Ambrosi E, Dallo F, Roman M, Ueda J, Xu J, Tanabe S, Benedetti A, Riello P.
    ACS Appl Mater Interfaces; 2020 Dec 09; 12(49):55195-55204. PubMed ID: 33226771
    [Abstract] [Full Text] [Related]

  • 34. Bismuth-oxide nanoparticles: study in a beam and as deposited.
    Mikkelä MH, Marnauza M, Hetherington CJD, Wallenberg R, Mårsell E, Liu YP, Mikkelsen A, Björneholm O, Öhrwall G, Tchaplyguine M.
    Phys Chem Chem Phys; 2024 Mar 27; 26(13):10369-10381. PubMed ID: 38502136
    [Abstract] [Full Text] [Related]

  • 35. In situ investigation of bismuth nanoparticles formation by transmission electron microscope.
    Liu L, Wang H, Yi Z, Deng Q, Lin Z, Zhang X.
    Micron; 2018 Feb 27; 105():30-34. PubMed ID: 29175448
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Sonochemical synthesis of a new nano-structures bismuth(III) supramolecular compound: new precursor for the preparation of bismuth(III) oxide nano-rods and bismuth(III) iodide nano-wires.
    Soltanzadeh N, Morsali A.
    Ultrason Sonochem; 2010 Jan 27; 17(1):139-44. PubMed ID: 19482504
    [Abstract] [Full Text] [Related]

  • 38. Synthesis and characterization of amorphous SiO2 nanowires derived from a polymeric precursor.
    Li J, Zhang Z, Luo Y, Guo L, Xie Z.
    J Nanosci Nanotechnol; 2008 Feb 27; 8(2):997-1002. PubMed ID: 18464440
    [Abstract] [Full Text] [Related]

  • 39. Real-time in situ atomic force microscopy imaging of bismuth crystal growth.
    Dale SE, Bending SJ, Peter LM.
    Langmuir; 2009 Oct 06; 25(19):11228-31. PubMed ID: 19788205
    [Abstract] [Full Text] [Related]

  • 40. Effects of catalyst droplets on wire growth and the resulting branched structures during VLS growth.
    Song M, Zhang Y, Chun J, Hu S, Tang M, Li D.
    Nanoscale; 2020 Apr 14; 12(14):7538-7543. PubMed ID: 32219293
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.