These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 18318708
1. The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis. Tarrío N, García-Leiro A, Cerdán ME, González-Siso MI. FEMS Yeast Res; 2008 Jun; 8(4):597-606. PubMed ID: 18318708 [Abstract] [Full Text] [Related]
2. A functional analysis of Kluyveromyces lactis glutathione reductase. García-Leiro A, Cerdán ME, González-Siso MI. Yeast; 2010 Jul; 27(7):431-41. PubMed ID: 20148387 [Abstract] [Full Text] [Related]
3. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Overkamp KM, Bakker BM, Steensma HY, van Dijken JP, Pronk JT. Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236 [Abstract] [Full Text] [Related]
4. Reoxidation of cytosolic NADPH in Kluyveromyces lactis. Tarrío N, Becerra M, Cerdán ME, González Siso MI. FEMS Yeast Res; 2006 May; 6(3):371-80. PubMed ID: 16630277 [Abstract] [Full Text] [Related]
5. Proteomic analysis of the oxidative stress response in Kluyveromyces lactis and effect of glutathione reductase depletion. García-Leiro A, Cerdán ME, González-Siso MI. J Proteome Res; 2010 May 07; 9(5):2358-76. PubMed ID: 20349988 [Abstract] [Full Text] [Related]
6. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Lamas-Maceiras M, Rodríguez-Belmonte E, Becerra M, González-Siso MI, Cerdán ME. Fungal Genet Biol; 2015 Sep 07; 82():95-103. PubMed ID: 26164373 [Abstract] [Full Text] [Related]
9. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Díaz-Flores M, Ibáñez-Hernández MA, Galván RE, Gutiérrez M, Durán-Reyes G, Medina-Navarro R, Pascoe-Lira D, Ortega-Camarillo C, Vilar-Rojas C, Cruz M, Baiza-Gutman LA. Life Sci; 2006 Apr 25; 78(22):2601-7. PubMed ID: 16325866 [Abstract] [Full Text] [Related]
13. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Lushchak VI, Gospodaryov DV. Cell Biol Int; 2005 Mar 01; 29(3):187-92. PubMed ID: 15893481 [Abstract] [Full Text] [Related]
14. The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic. Bériault R, Hamel R, Chenier D, Mailloux RJ, Joly H, Appanna VD. Biometals; 2007 Apr 01; 20(2):165-76. PubMed ID: 16900398 [Abstract] [Full Text] [Related]
15. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Zeeman AM, Kuyper M, Pronk JT, van Dijken JP, Steensma HY. Yeast; 2000 May 01; 16(7):611-20. PubMed ID: 10806423 [Abstract] [Full Text] [Related]
16. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Verho R, Richard P, Jonson PH, Sundqvist L, Londesborough J, Penttilä M. Biochemistry; 2002 Nov 19; 41(46):13833-8. PubMed ID: 12427047 [Abstract] [Full Text] [Related]
17. KlADH3, a gene encoding a mitochondrial alcohol dehydrogenase, affects respiratory metabolism and cytochrome content in Kluyveromyces lactis. Saliola M, De Maria I, Lodi T, Fiori A, Falcone C. FEMS Yeast Res; 2006 Dec 19; 6(8):1184-92. PubMed ID: 17156015 [Abstract] [Full Text] [Related]
19. An approach to the hypoxic and oxidative stress responses in Kluyveromyces lactis by analysis of mRNA levels. Blanco M, Núñez L, Tarrío N, Canto E, Becerra M, González-Siso MI, Cerdán ME. FEMS Yeast Res; 2007 Aug 19; 7(5):702-14. PubMed ID: 17425672 [Abstract] [Full Text] [Related]