These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
434 related items for PubMed ID: 18321068
1. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy. Lórenz-Fonfría VA, Furutani Y, Kandori H. Biochemistry; 2008 Apr 01; 47(13):4071-81. PubMed ID: 18321068 [Abstract] [Full Text] [Related]
2. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin. Shibata M, Kandori H. Biochemistry; 2005 May 24; 44(20):7406-13. PubMed ID: 15895984 [Abstract] [Full Text] [Related]
3. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K. Maeda A, Tomson FL, Gennis RB, Ebrey TG, Balashov SP. Biochemistry; 1999 Jul 06; 38(27):8800-7. PubMed ID: 10393556 [Abstract] [Full Text] [Related]
7. Water molecule rearrangements around Leu93 and Trp182 in the formation of the L intermediate in bacteriorhodopsin's photocycle. Maeda A, Tomson FL, Gennis RB, Balashov SP, Ebrey TG. Biochemistry; 2003 Mar 11; 42(9):2535-41. PubMed ID: 12614147 [Abstract] [Full Text] [Related]
8. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy. Morgan JE, Vakkasoglu AS, Gennis RB, Maeda A. Biochemistry; 2007 Mar 13; 46(10):2787-96. PubMed ID: 17300175 [Abstract] [Full Text] [Related]
9. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model. Tanimoto T, Furutani Y, Kandori H. Biochemistry; 2003 Mar 04; 42(8):2300-6. PubMed ID: 12600197 [Abstract] [Full Text] [Related]
11. FTIR spectroscopy of the O photointermediate in pharaonis phoborhodopsin. Furutani Y, Iwamoto M, Shimono K, Wada A, Ito M, Kamo N, Kandori H. Biochemistry; 2004 May 11; 43(18):5204-12. PubMed ID: 15122886 [Abstract] [Full Text] [Related]
12. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N, Shibata M, Friedman N, Sheves M, Belenky M, Herzfeld J, Kandori H. Biochemistry; 2006 Sep 05; 45(35):10674-81. PubMed ID: 16939219 [Abstract] [Full Text] [Related]
13. Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin. Maeda A, Herzfeld J, Belenky M, Needleman R, Gennis RB, Balashov SP, Ebrey TG. Biochemistry; 2003 Dec 09; 42(48):14122-9. PubMed ID: 14640679 [Abstract] [Full Text] [Related]
15. Time-resolved Fourier transform infrared spectroscopy of the polarizable proton continua and the proton pump mechanism of bacteriorhodopsin. Wang J, El-Sayed MA. Biophys J; 2001 Feb 09; 80(2):961-71. PubMed ID: 11159463 [Abstract] [Full Text] [Related]
16. Helical and reverse turn changes in the BR->N transition of bacteriorhodopsin. Lazarova T, Padrós E. Biochemistry; 1996 Jun 25; 35(25):8354-8. PubMed ID: 8679593 [Abstract] [Full Text] [Related]
18. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M, Yoshitsugu M, Mizuide N, Ihara K, Kandori H. Biochemistry; 2007 Jun 26; 46(25):7525-35. PubMed ID: 17547422 [Abstract] [Full Text] [Related]
19. Time-resolved FTIR spectroscopy of the photointermediates involved in fast transient H+ release by proteorhodopsin. Xiao Y, Partha R, Krebs R, Braiman M. J Phys Chem B; 2005 Jan 13; 109(1):634-41. PubMed ID: 16851056 [Abstract] [Full Text] [Related]
20. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y, Kawanabe A, Jung KH, Kandori H. Biochemistry; 2005 Sep 20; 44(37):12287-96. PubMed ID: 16156642 [Abstract] [Full Text] [Related] Page: [Next] [New Search]