These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
563 related items for PubMed ID: 18321080
1. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine. Johnson JA, Kim K, Mayhew M, Mitchell DG, Sevy ET. J Phys Chem A; 2008 Mar 27; 112(12):2543-52. PubMed ID: 18321080 [Abstract] [Full Text] [Related]
2. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode. Mitchell DG, Johnson AM, Johnson JA, Judd KA, Kim K, Mayhew M, Powell AL, Sevy ET. J Phys Chem A; 2008 Feb 14; 112(6):1157-67. PubMed ID: 18201072 [Abstract] [Full Text] [Related]
3. Quenching of highly vibrationally excited pyrimidine by collisions with CO2. Johnson JA, Duffin AM, Hom BJ, Jackson KE, Sevy ET. J Chem Phys; 2008 Feb 07; 128(5):054304. PubMed ID: 18266447 [Abstract] [Full Text] [Related]
4. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer. Kim K, Johnson AM, Powell AL, Mitchell DG, Sevy ET. J Chem Phys; 2014 Dec 21; 141(23):234306. PubMed ID: 25527934 [Abstract] [Full Text] [Related]
5. State-resolved collisional quenching of vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) by D35Cl(v = 0). Li Z, Korobkova E, Werner K, Shum L, Mullin AS. J Chem Phys; 2005 Nov 01; 123(17):174306. PubMed ID: 16375527 [Abstract] [Full Text] [Related]
6. Full state-resolved energy gain profiles of CO2 (J = 2-80) from collisions of highly vibrationally excited molecules. 1. Relaxation of pyrazine (E = 37900 cm(-1)). Havey DK, Du J, Liu Q, Mullin AS. J Phys Chem A; 2010 Jan 28; 114(3):1569-80. PubMed ID: 20000656 [Abstract] [Full Text] [Related]
7. Relaxation dynamics of highly vibrationally excited picoline isomers (E(vib) = 38 300 cm(-1)) with CO2: the role of state density in impulsive collisions. Miller EM, Murat L, Bennette N, Hayes M, Mullin AS. J Phys Chem A; 2006 Mar 09; 110(9):3266-72. PubMed ID: 16509652 [Abstract] [Full Text] [Related]
8. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2. Yuan L, Du J, Mullin AS. J Chem Phys; 2008 Jul 07; 129(1):014303. PubMed ID: 18624476 [Abstract] [Full Text] [Related]
10. Collisions of highly vibrationally excited pyrazine (E vib = 37,900 cm(-1)) with HOD: state-resolved probing of strong and weak collisions. Havey DK, Liu Q, Li Z, Elioff M, Mullin AS. J Phys Chem A; 2007 Dec 27; 111(51):13321-9. PubMed ID: 18052137 [Abstract] [Full Text] [Related]
12. Dynamics of weak and strong collisions: highly vibrationally excited pyrazine (E = 37900 cm(-1)) with DCl. Du J, Yuan L, Hsieh S, Lin F, Mullin AS. J Phys Chem A; 2008 Oct 02; 112(39):9396-404. PubMed ID: 18729434 [Abstract] [Full Text] [Related]
13. Full state-resolved energy gain profiles of CO2 from collisions with highly vibrationally excited molecules. II. Energy-dependent pyrazine (E = 32,700 and 37,900 cm(-1)) relaxation. Du J, Sassin NA, Havey DK, Hsu K, Mullin AS. J Phys Chem A; 2013 Nov 21; 117(46):12104-15. PubMed ID: 24063656 [Abstract] [Full Text] [Related]
14. Energy transfer dynamics in the presence of preferential hydrogen bonding: collisions of highly vibrationally excited pyridine-h5, -d5, and -f5 with water. Liu Q, Havey DK, Mullin AS. J Phys Chem A; 2008 Oct 02; 112(39):9509-15. PubMed ID: 18710206 [Abstract] [Full Text] [Related]
15. [Vibrational to rotational energy transfer between CsH (Chi1 Sigma+, nu > or = 15) and CO2]. Dai K, Wang SY, Liu J, Shen YF. Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Nov 02; 32(11):2902-5. PubMed ID: 23387146 [Abstract] [Full Text] [Related]
16. Trajectory study of supercollision relaxation in highly vibrationally excited pyrazine and CO2. Li Z, Sansom R, Bonella S, Coker DF, Mullin AS. J Phys Chem A; 2005 Sep 01; 109(34):7657-66. PubMed ID: 16834139 [Abstract] [Full Text] [Related]
17. Energy transfer between polyatomic molecules. 3. Energy transfer quantities and probability density functions in self-collisions of benzene, toluene, p-xylene and azulene. Bernshtein V, Oref I. J Phys Chem A; 2006 Jul 13; 110(27):8477-87. PubMed ID: 16821831 [Abstract] [Full Text] [Related]
18. Kinetically controlled selective ionization study on the efficient collisional energy transfer in the deactivation of highly vibrationally excited trans-stilbene. Frerichs H, Hollerbach M, Lenzer T, Luther K. J Phys Chem A; 2006 Mar 09; 110(9):3179-85. PubMed ID: 16509642 [Abstract] [Full Text] [Related]
19. [Time resolved distribution of excitation energy in collisions of vibrationally excited KH with CO2]. Feng L, Liu J, Wang SY, Zhang WJ, Li JL, Dai K, Shen YF. Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul 09; 34(7):1758-62. PubMed ID: 25269275 [Abstract] [Full Text] [Related]
20. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton. Liu CL, Hsu HC, Lyu JJ, Ni CK. J Chem Phys; 2006 Feb 07; 124(5):054302. PubMed ID: 16468864 [Abstract] [Full Text] [Related] Page: [Next] [New Search]