These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


718 related items for PubMed ID: 18324839

  • 1. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes.
    Lee SJ, Youn BS, Park JW, Niazi JH, Kim YS, Gu MB.
    Anal Chem; 2008 Apr 15; 80(8):2867-73. PubMed ID: 18324839
    [Abstract] [Full Text] [Related]

  • 2. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
    Tang Q, Su X, Loh KP.
    J Colloid Interface Sci; 2007 Nov 01; 315(1):99-106. PubMed ID: 17689549
    [Abstract] [Full Text] [Related]

  • 3. Rapid and sensitive detection of Nampt (PBEF/visfatin) in human serum using an ssDNA aptamer-based capacitive biosensor.
    Park JW, Kallempudi SS, Niazi JH, Gurbuz Y, Youn BS, Gu MB.
    Biosens Bioelectron; 2012 Nov 01; 38(1):233-8. PubMed ID: 22704839
    [Abstract] [Full Text] [Related]

  • 4. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy.
    Wang J, Munir A, Zhou HS.
    Talanta; 2009 Jun 30; 79(1):72-6. PubMed ID: 19376346
    [Abstract] [Full Text] [Related]

  • 5. Time-resolved fluorescence resonance energy transfer and surface plasmon resonance-based assays for retinoid and transthyretin binding to retinol-binding protein 4.
    Sharif O, Hu H, Klock H, Hampton EN, Nigoghossian E, Knuth MW, Matzen J, Anderson P, Trager R, Uno T, Glynne RJ, Azarian SM, Caldwell JS, Brinker A.
    Anal Biochem; 2009 Sep 15; 392(2):162-8. PubMed ID: 19482004
    [Abstract] [Full Text] [Related]

  • 6. A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance.
    Polonschii C, David S, Tombelli S, Mascini M, Gheorghiu M.
    Talanta; 2010 Mar 15; 80(5):2157-64. PubMed ID: 20152466
    [Abstract] [Full Text] [Related]

  • 7. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions.
    Pollet J, Delport F, Janssen KP, Jans K, Maes G, Pfeiffer H, Wevers M, Lammertyn J.
    Biosens Bioelectron; 2009 Dec 15; 25(4):864-9. PubMed ID: 19775884
    [Abstract] [Full Text] [Related]

  • 8. Biosensors for RNA aptamers-protein interaction.
    Tombelli S, Minunni M, Mascini M.
    Methods Mol Biol; 2008 Dec 15; 419():109-19. PubMed ID: 18369978
    [Abstract] [Full Text] [Related]

  • 9. An aptamer-based biosensor for mammalian initiation factor eukaryotic initiation factor 4A.
    Oguro A, Ohtsu T, Nakamura Y.
    Anal Biochem; 2009 May 01; 388(1):102-7. PubMed ID: 19250914
    [Abstract] [Full Text] [Related]

  • 10. Detection of microcystins in environmental samples using surface plasmon resonance biosensor.
    Hu C, Gan N, Chen Y, Bi L, Zhang X, Song L.
    Talanta; 2009 Nov 15; 80(1):407-10. PubMed ID: 19782244
    [Abstract] [Full Text] [Related]

  • 11. Adenosine detection by using gold nanoparticles and designed aptamer sequences.
    Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C.
    Analyst; 2009 Jul 15; 134(7):1355-60. PubMed ID: 19562201
    [Abstract] [Full Text] [Related]

  • 12. Levels of retinol-binding protein 4 and uric acid in patients with type 2 diabetes mellitus.
    Chen CC, Wu JY, Chang CT, Tsai FJ, Wang TY, Liu YM, Tsui HC, Chen RH, Chiou SC.
    Metabolism; 2009 Dec 15; 58(12):1812-6. PubMed ID: 19709697
    [Abstract] [Full Text] [Related]

  • 13. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification.
    Wu ZS, Zhang S, Zhou H, Shen GL, Yu R.
    Anal Chem; 2010 Mar 15; 82(6):2221-7. PubMed ID: 20151715
    [Abstract] [Full Text] [Related]

  • 14. Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays.
    Zhou WJ, Halpern AR, Seefeld TH, Corn RM.
    Anal Chem; 2012 Jan 03; 84(1):440-5. PubMed ID: 22126812
    [Abstract] [Full Text] [Related]

  • 15. Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera.
    Vaisocherová H, Faca VM, Taylor AD, Hanash S, Jiang S.
    Biosens Bioelectron; 2009 Mar 15; 24(7):2143-8. PubMed ID: 19157844
    [Abstract] [Full Text] [Related]

  • 16. Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures.
    Kim DK, Kerman K, Hiep HM, Saito M, Yamamura S, Takamura Y, Kwon YS, Tamiya E.
    Anal Biochem; 2008 Aug 01; 379(1):1-7. PubMed ID: 18485275
    [Abstract] [Full Text] [Related]

  • 17. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum.
    Ferapontova EE, Olsen EM, Gothelf KV.
    J Am Chem Soc; 2008 Apr 02; 130(13):4256-8. PubMed ID: 18324816
    [Abstract] [Full Text] [Related]

  • 18. Surface plasmon-coupled directional emission based on a conformational-switching signaling aptamer.
    Xie TT, Liu Q, Cai WP, Chen Z, Li YQ.
    Chem Commun (Camb); 2009 Jun 14; (22):3190-2. PubMed ID: 19587909
    [Abstract] [Full Text] [Related]

  • 19. Screening and characterization of high-affinity ssDNA aptamers against anthrax protective antigen.
    Choi JS, Kim SG, Lahousse M, Park HY, Park HC, Jeong B, Kim J, Kim SK, Yoon MY.
    J Biomol Screen; 2011 Feb 14; 16(2):266-71. PubMed ID: 21245470
    [Abstract] [Full Text] [Related]

  • 20. A binary Cy3 aptamer probe composed of folded modules.
    Endo K, Nakamura Y.
    Anal Biochem; 2010 May 01; 400(1):103-9. PubMed ID: 20093103
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.