These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


793 related items for PubMed ID: 18325234

  • 1. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds.
    Liu L, Liu J, Wang M, Min S, Cai Y, Zhu L, Yao J.
    J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234
    [Abstract] [Full Text] [Related]

  • 2. Fabrication and characterization of porous tubular silk fibroin scaffolds.
    Min S, Gao X, Liu L, Tian L, Zhu L, Zhang H, Yao J.
    J Biomater Sci Polym Ed; 2009; 20(13):1961-74. PubMed ID: 19793450
    [Abstract] [Full Text] [Related]

  • 3. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX, Ren J, Chen C, Ren TB, Zhou XY.
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [Abstract] [Full Text] [Related]

  • 4. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior.
    Wei K, Li Y, Kim KO, Nakagawa Y, Kim BS, Abe K, Chen GQ, Kim IS.
    J Biomed Mater Res A; 2011 Jun 01; 97(3):272-80. PubMed ID: 21442728
    [Abstract] [Full Text] [Related]

  • 5. Nonwoven silk fibroin net/nano-hydroxyapatite scaffold: preparation and characterization.
    Zhao Y, Chen J, Chou AH, Li G, LeGeros RZ.
    J Biomed Mater Res A; 2009 Dec 15; 91(4):1140-9. PubMed ID: 19148924
    [Abstract] [Full Text] [Related]

  • 6. Preparation and characterization of Antheraea assama silk fibroin based novel non-woven scaffold for tissue engineering applications.
    Kasoju N, Bhonde RR, Bora U.
    J Tissue Eng Regen Med; 2009 Oct 15; 3(7):539-52. PubMed ID: 19670334
    [Abstract] [Full Text] [Related]

  • 7. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI, Bourban PE, Tami AE, Alini M, Eglin D.
    Acta Biomater; 2009 Nov 15; 5(9):3316-27. PubMed ID: 19442765
    [Abstract] [Full Text] [Related]

  • 8. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q, Zhang X, Hu X, Kaplan DL.
    Macromol Biosci; 2010 Mar 10; 10(3):289-98. PubMed ID: 19924684
    [Abstract] [Full Text] [Related]

  • 9. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin.
    Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL.
    Biomaterials; 2005 May 10; 26(15):2775-85. PubMed ID: 15585282
    [Abstract] [Full Text] [Related]

  • 10. Porous 3-D scaffolds from regenerated silk fibroin.
    Nazarov R, Jin HJ, Kaplan DL.
    Biomacromolecules; 2004 May 10; 5(3):718-26. PubMed ID: 15132652
    [Abstract] [Full Text] [Related]

  • 11. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds.
    Qi XN, Mou ZL, Zhang J, Zhang ZQ.
    J Biomed Mater Res A; 2014 Feb 10; 102(2):366-72. PubMed ID: 23533149
    [Abstract] [Full Text] [Related]

  • 12. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning.
    Zhou J, Cao C, Ma X.
    Int J Biol Macromol; 2009 Dec 01; 45(5):504-10. PubMed ID: 19772871
    [Abstract] [Full Text] [Related]

  • 13. [Property studies on three-dimensional porous blended silk scaffolds].
    Rao J, Shen J, Quan D, Xu Y.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct 01; 23(10):1264-70. PubMed ID: 19957853
    [Abstract] [Full Text] [Related]

  • 14. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL.
    Biomaterials; 2006 Jun 01; 27(16):3115-24. PubMed ID: 16458961
    [Abstract] [Full Text] [Related]

  • 15. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications.
    Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL.
    Acta Biomater; 2012 Jan 01; 8(1):289-301. PubMed ID: 22019518
    [Abstract] [Full Text] [Related]

  • 16. Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds.
    Lu Q, Zhang S, Hu K, Feng Q, Cao C, Cui F.
    Biomaterials; 2007 May 01; 28(14):2306-13. PubMed ID: 17292467
    [Abstract] [Full Text] [Related]

  • 17. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D, Zhang Z, Zheng C, Zhao B, Sun K, Nian Z, Zhang X, Li R, Li H.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar 01; 30(3):292-7. PubMed ID: 27281872
    [Abstract] [Full Text] [Related]

  • 18. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering.
    Lima PA, Resende CX, Soares GD, Anselme K, Almeida LE.
    Mater Sci Eng C Mater Biol Appl; 2013 Aug 01; 33(6):3389-95. PubMed ID: 23706225
    [Abstract] [Full Text] [Related]

  • 19. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles.
    Kim H, Che L, Ha Y, Ryu W.
    Mater Sci Eng C Mater Biol Appl; 2014 Jul 01; 40():324-35. PubMed ID: 24857500
    [Abstract] [Full Text] [Related]

  • 20. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X, Liu L, Zhang Q.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb 01; 21(2):120-4. PubMed ID: 17357456
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 40.