These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
596 related items for PubMed ID: 18325862
1. Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Sundaram J, Durance TD, Wang R. Acta Biomater; 2008 Jul; 4(4):932-42. PubMed ID: 18325862 [Abstract] [Full Text] [Related]
3. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Kim HW, Knowles JC, Kim HE. J Biomed Mater Res A; 2005 Feb 01; 72(2):136-45. PubMed ID: 15549783 [Abstract] [Full Text] [Related]
4. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Li J, Chen Y, Yin Y, Yao F, Yao K. Biomaterials; 2007 Feb 01; 28(5):781-90. PubMed ID: 17056107 [Abstract] [Full Text] [Related]
5. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif Organs; 2008 May 01; 32(5):388-97. PubMed ID: 18471168 [Abstract] [Full Text] [Related]
6. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Boissard CI, Bourban PE, Tami AE, Alini M, Eglin D. Acta Biomater; 2009 Nov 01; 5(9):3316-27. PubMed ID: 19442765 [Abstract] [Full Text] [Related]
7. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C, Hasirci V, Hasirci N. J Tissue Eng Regen Med; 2012 Feb 01; 6(2):135-43. PubMed ID: 21351375 [Abstract] [Full Text] [Related]
8. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Han J, Zhou Z, Yin R, Yang D, Nie J. Int J Biol Macromol; 2010 Mar 01; 46(2):199-205. PubMed ID: 19941890 [Abstract] [Full Text] [Related]
9. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. Liu L, Liu J, Wang M, Min S, Cai Y, Zhu L, Yao J. J Biomater Sci Polym Ed; 2008 Mar 01; 19(3):325-38. PubMed ID: 18325234 [Abstract] [Full Text] [Related]
10. The fabrication of nanocomposites via calcium phosphate formation on gelatin-chitosan network and the gelatin influence on the properties of biphasic composites. Babaei Z, Jahanshahi M, Rabiee SM. Mater Sci Eng C Mater Biol Appl; 2013 Jan 01; 33(1):370-5. PubMed ID: 25428083 [Abstract] [Full Text] [Related]
11. Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic" electroless coprecipitation route. Oliveira JM, Costa SA, Leonor IB, Malafaya PB, Mano JF, Reis RL. J Biomed Mater Res A; 2009 Feb 01; 88(2):470-80. PubMed ID: 18306322 [Abstract] [Full Text] [Related]
12. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. I. Preparation and characterization of scaffold. Peng Q, Jiang F, Huang P, Zhou S, Weng J, Bao C, Zhang C, Yu H. J Biomed Mater Res A; 2010 Jun 01; 93(3):920-9. PubMed ID: 19708076 [Abstract] [Full Text] [Related]
13. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite. Nayar S, Sinha A. Colloids Surf B Biointerfaces; 2004 May 01; 35(1):29-32. PubMed ID: 15261052 [Abstract] [Full Text] [Related]
14. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M, Mirzadeh H, Mayer C, Urch H, Eslaminejad MB, Bagheri F, Mivehchi H. J Biomed Mater Res A; 2010 Mar 15; 92(4):1244-55. PubMed ID: 19322878 [Abstract] [Full Text] [Related]
15. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW, Kim HE, Salih V. Biomaterials; 2005 Sep 15; 26(25):5221-30. PubMed ID: 15792549 [Abstract] [Full Text] [Related]
16. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Landi E, Valentini F, Tampieri A. Acta Biomater; 2008 Nov 15; 4(6):1620-6. PubMed ID: 18579459 [Abstract] [Full Text] [Related]
17. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J. J Biomed Mater Res A; 2012 May 15; 100(5):1347-55. PubMed ID: 22374752 [Abstract] [Full Text] [Related]
18. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. Liu Y, Lu Y, Tian X, Cui G, Zhao Y, Yang Q, Yu S, Xing G, Zhang B. Biomaterials; 2009 Oct 15; 30(31):6276-85. PubMed ID: 19683811 [Abstract] [Full Text] [Related]
19. Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Thein-Han WW, Saikhun J, Pholpramoo C, Misra RD, Kitiyanant Y. Acta Biomater; 2009 Nov 15; 5(9):3453-66. PubMed ID: 19460465 [Abstract] [Full Text] [Related]
20. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL, Zhang N, Zhang J, Shi D, Bhaduri S, Wen X. J Biomed Mater Res A; 2007 Aug 15; 82(2):373-82. PubMed ID: 17295227 [Abstract] [Full Text] [Related] Page: [Next] [New Search]