These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
402 related items for PubMed ID: 18327546
1. Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques. Alloue WA, Destain J, El Medjoub T, Ghalfi H, Kabran P, Thonart P. Appl Biochem Biotechnol; 2008 Jul; 150(1):51-63. PubMed ID: 18327546 [Abstract] [Full Text] [Related]
2. Immobilization of Yarrowia lipolytica lipase--a comparison of stability of physical adsorption and covalent attachment techniques. Cunha AG, Fernández-Lorente G, Bevilaqua JV, Destain J, Paiva LM, Freire DM, Fernández-Lafuente R, Guisán JM. Appl Biochem Biotechnol; 2008 Mar; 146(1-3):49-56. PubMed ID: 18421586 [Abstract] [Full Text] [Related]
3. Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: Morphological, physico-chemical and kinetic characteristics. Pereira ADS, Diniz MM, De Jong G, Gama Filho HS, Dos Anjos MJ, Finotelli PV, Fontes-Sant'Ana GC, Amaral PFF. Int J Biol Macromol; 2019 Oct 15; 139():621-630. PubMed ID: 31381917 [Abstract] [Full Text] [Related]
4. Effect of additives on freeze-drying and storage of Yarrowia lipolytica lipase. Darvishi F, Destain J, Nahvi I, Thonart P, Zarkesh-Esfahani H. Appl Biochem Biotechnol; 2012 Nov 15; 168(5):1101-7. PubMed ID: 22932849 [Abstract] [Full Text] [Related]
5. Immobilization of hydrophobic lipase derivatives on to organic polymer beads. Basri M, Ampon K, Yunus WM, Razak CN, Salleh AB. J Chem Technol Biotechnol; 1994 Jan 15; 59(1):37-44. PubMed ID: 7764496 [Abstract] [Full Text] [Related]
6. Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification. Xie R, Cui C, Chen B, Tan T. Appl Biochem Biotechnol; 2015 Oct 15; 177(3):771-9. PubMed ID: 26245260 [Abstract] [Full Text] [Related]
7. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Fernandez-Lorente G, Godoy CA, Mendes AA, Lopez-Gallego F, Grazu V, de Las Rivas B, Palomo JM, Hermoso J, Fernandez-Lafuente R, Guisan JM. Biomacromolecules; 2008 Sep 15; 9(9):2553-61. PubMed ID: 18702542 [Abstract] [Full Text] [Related]
8. Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization: enzyme characteristics and stability. Pahujani S, Kanwar SS, Chauhan G, Gupta R. Bioresour Technol; 2008 May 15; 99(7):2566-70. PubMed ID: 17561391 [Abstract] [Full Text] [Related]
9. [Optimize conditions and activities for neutrophil lipase immobilized by nano-silica dioxide]. Jin J, Yang Y, Wu K, Wang H, Liu B, Yu Z. Sheng Wu Gong Cheng Xue Bao; 2009 Dec 15; 25(12):2003-7. PubMed ID: 20352981 [Abstract] [Full Text] [Related]
10. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde. Dizge N, Keskinler B, Tanriseven A. Colloids Surf B Biointerfaces; 2008 Oct 01; 66(1):34-8. PubMed ID: 18571389 [Abstract] [Full Text] [Related]
11. Adsorption and activity of Candida rugosa lipase on polypropylene hollow fiber membrane modified with phospholipid analogous polymers. Deng HT, Xu ZK, Huang XJ, Wu J, Seta P. Langmuir; 2004 Nov 09; 20(23):10168-73. PubMed ID: 15518509 [Abstract] [Full Text] [Related]
12. Pretreatment of Candida rugosa lipase with soybean oil before immobilization on beta-cyclodextrin-based polymer. Ozmen EY, Yilmaz M. Colloids Surf B Biointerfaces; 2009 Feb 15; 69(1):58-62. PubMed ID: 19091527 [Abstract] [Full Text] [Related]
13. Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone. Kim M, Park JM, Um HJ, Lee DH, Lee KH, Kobayashi F, Iwasaka Y, Hong CS, Min J, Kim YH. J Basic Microbiol; 2010 Jun 15; 50(3):218-26. PubMed ID: 20473952 [Abstract] [Full Text] [Related]
14. [Immobilization of laccase on magnetic chitosan microspheres and study on its enzymic properties]. Jiang DS, Long SY, Huang J, Xiao HY, Zhou JY. Wei Sheng Wu Xue Bao; 2005 Aug 15; 45(4):630-3. PubMed ID: 16245887 [Abstract] [Full Text] [Related]
15. Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads. Wu J, Luan M, Zhao J. Int J Biol Macromol; 2006 Nov 15; 39(4-5):185-91. PubMed ID: 16712924 [Abstract] [Full Text] [Related]
16. Simple physical adsorption technique to immobilize Yarrowia lipolytica lipase purified by different methods on magnetic nanoparticles: Adsorption isotherms and thermodynamic approach. Carvalho T, Pereira ADS, Bonomo RCF, Franco M, Finotelli PV, Amaral PFF. Int J Biol Macromol; 2020 Oct 01; 160():889-902. PubMed ID: 32454106 [Abstract] [Full Text] [Related]
17. Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies. Karra-Châabouni M, Bouaziz I, Boufi S, Botelho do Rego AM, Gargouri Y. Colloids Surf B Biointerfaces; 2008 Oct 15; 66(2):168-77. PubMed ID: 18684596 [Abstract] [Full Text] [Related]
18. Entrapment of laurel lipase in chitosan hydrogel beads. Yagar H, Balkan U. Artif Cells Nanomed Biotechnol; 2017 Aug 15; 45(5):864-870. PubMed ID: 27181370 [Abstract] [Full Text] [Related]
19. Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Ye P, Xu ZK, Wu J, Innocent C, Seta P. Biomaterials; 2006 Aug 15; 27(22):4169-76. PubMed ID: 16584770 [Abstract] [Full Text] [Related]
20. A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions. Gustafsson H, Thörn C, Holmberg K. Colloids Surf B Biointerfaces; 2011 Oct 15; 87(2):464-71. PubMed ID: 21733664 [Abstract] [Full Text] [Related] Page: [Next] [New Search]