These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1108 related items for PubMed ID: 18333781

  • 1. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.
    Zhang W, Walboomers XF, van Osch GJ, van den Dolder J, Jansen JA.
    Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781
    [Abstract] [Full Text] [Related]

  • 2. An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice.
    Hu JZ, Zhang ZY, Zhao J, Zhang XL, Liu GT, Jiang XQ.
    Chin Med J (Engl); 2009 Apr 20; 122(8):972-9. PubMed ID: 19493425
    [Abstract] [Full Text] [Related]

  • 3. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR, Jaquiéry C, Volloch V, Heberer M, Martin I, Kaplan DL.
    Biomaterials; 2005 Jun 20; 26(16):3173-85. PubMed ID: 15603812
    [Abstract] [Full Text] [Related]

  • 4. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G, Sun J, Li Y, Zhou H, Cui L, Liu W, Cao Y.
    Calcif Tissue Int; 2008 Sep 20; 83(3):176-85. PubMed ID: 18704250
    [Abstract] [Full Text] [Related]

  • 5. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.
    Shen FH, Zeng Q, Lv Q, Choi L, Balian G, Li X, Laurencin CT.
    Spine J; 2006 Sep 20; 6(6):615-23. PubMed ID: 17088192
    [Abstract] [Full Text] [Related]

  • 6. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering.
    E LL, Xu LL, Wu X, Wang DS, Lv Y, Wang JZ, Liu HC.
    Tissue Eng Part A; 2010 Sep 20; 16(9):2927-40. PubMed ID: 20486786
    [Abstract] [Full Text] [Related]

  • 7. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.
    Biomaterials; 2006 Dec 20; 27(36):6123-37. PubMed ID: 16945410
    [Abstract] [Full Text] [Related]

  • 8. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds.
    Fang B, Wan YZ, Tang TT, Gao C, Dai KR.
    Tissue Eng Part A; 2009 May 20; 15(5):1091-8. PubMed ID: 19196148
    [Abstract] [Full Text] [Related]

  • 9. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold.
    Valarmathi MT, Yost MJ, Goodwin RL, Potts JD.
    Biomaterials; 2008 May 20; 29(14):2203-16. PubMed ID: 18289664
    [Abstract] [Full Text] [Related]

  • 10. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds.
    Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen JA.
    J Biomed Mater Res A; 2010 Apr 20; 93(1):247-57. PubMed ID: 19557787
    [Abstract] [Full Text] [Related]

  • 11. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.
    Bernhardt A, Despang F, Lode A, Demmler A, Hanke T, Gelinsky M.
    J Tissue Eng Regen Med; 2009 Jan 20; 3(1):54-62. PubMed ID: 19012272
    [Abstract] [Full Text] [Related]

  • 12. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate.
    Liu G, Zhao L, Cui L, Liu W, Cao Y.
    Biomed Mater; 2007 Jun 20; 2(2):78-86. PubMed ID: 18458439
    [Abstract] [Full Text] [Related]

  • 13. Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation.
    Oliveira JM, Kotobuki N, Tadokoro M, Hirose M, Mano JF, Reis RL, Ohgushi H.
    Bone; 2010 May 20; 46(5):1424-35. PubMed ID: 20152952
    [Abstract] [Full Text] [Related]

  • 14. A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells.
    Nair MB, Bernhardt A, Lode A, Heinemann C, Thieme S, Hanke T, Varma H, Gelinsky M, John A.
    J Biomed Mater Res A; 2009 Aug 20; 90(2):533-42. PubMed ID: 18563821
    [Abstract] [Full Text] [Related]

  • 15. The performance of human dental pulp stem cells on different three-dimensional scaffold materials.
    Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA.
    Biomaterials; 2006 Nov 20; 27(33):5658-68. PubMed ID: 16916542
    [Abstract] [Full Text] [Related]

  • 16. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Srouji S, Livne E, Reis RL, Neves NM.
    J Tissue Eng Regen Med; 2012 Jan 20; 6(1):21-8. PubMed ID: 21312336
    [Abstract] [Full Text] [Related]

  • 17. In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly(d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds.
    Kim S, Kim SS, Lee SH, Eun Ahn S, Gwak SJ, Song JH, Kim BS, Chung HM.
    Biomaterials; 2008 Mar 20; 29(8):1043-53. PubMed ID: 18023477
    [Abstract] [Full Text] [Related]

  • 18. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralized collagen.
    Bernhardt A, Lode A, Mietrach C, Hempel U, Hanke T, Gelinsky M.
    J Biomed Mater Res A; 2009 Sep 01; 90(3):852-62. PubMed ID: 18615470
    [Abstract] [Full Text] [Related]

  • 19. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, Yang F, Wang S, Xu W, Wang A, Lu S.
    Biomaterials; 2008 May 01; 29(15):2378-87. PubMed ID: 18313139
    [Abstract] [Full Text] [Related]

  • 20. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].
    Liu X, Zhou GD, Lü XJ, Liu TY, Zhang WJ, Liu W, Cao YL.
    Zhonghua Yi Xue Za Zhi; 2007 Jul 17; 87(27):1929-33. PubMed ID: 17923021
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 56.