These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
297 related items for PubMed ID: 18334328
1. Estimation of the surface normal velocity of high frequency ultrasound transducers. Rupitsch SJ, Kindermann S, Zagar BG. IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):225-35. PubMed ID: 18334328 [Abstract] [Full Text] [Related]
3. Prediction of surface temperature rise of ultrasonic diagnostic array transducers. Ohm WS, Kim JH, Kim EC. IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):125-38. PubMed ID: 18334319 [Abstract] [Full Text] [Related]
4. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers. Zhao X, Gang T. Ultrasonics; 2009 Jan; 49(1):126-30. PubMed ID: 18774152 [Abstract] [Full Text] [Related]
5. Simulation of sound field in a tissue medium generated by a concave spherically annular transducer. Qian S, Kamakura T, Akiyama M. Ultrasonics; 2006 Dec 22; 44 Suppl 1():e271-4. PubMed ID: 16843509 [Abstract] [Full Text] [Related]
6. A simple approximate formula for the physical focal length of spherically focused transducers. Huang JH, Ding D. IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec 22; 56(12):2764-8. PubMed ID: 20040414 [Abstract] [Full Text] [Related]
7. Lens-focused transducer modeling using an extended KLM model. Maréchal P, Levassort F, Tran-Huu-Hue LP, Lethiecq M. Ultrasonics; 2007 May 22; 46(2):155-67. PubMed ID: 17382986 [Abstract] [Full Text] [Related]
10. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics. Sarvazyan A, Fillinger L. Ultrasonics; 2009 Mar 22; 49(3):301-5. PubMed ID: 19062060 [Abstract] [Full Text] [Related]
11. Modeling of a high frequency ultrasonic transducer using periodic structures. Maréchal P, Haumesser L, Tran-Huu-Hue LP, Holc J, Kuscer D, Lethiecq M, Feuillard G. Ultrasonics; 2008 Apr 22; 48(2):141-9. PubMed ID: 18255118 [Abstract] [Full Text] [Related]
12. Acousto-optic interaction in a non-homogeneous acoustic field excited by a wedge-shaped transducer. Balakshy VI, Linde BB, Vostrikova AN. Ultrasonics; 2008 Sep 22; 48(5):351-6. PubMed ID: 18291434 [Abstract] [Full Text] [Related]
14. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer. Frijlink ME, Løvstakken L, Torp H. Ultrasonics; 2009 Dec 22; 49(8):601-4. PubMed ID: 19403153 [Abstract] [Full Text] [Related]
16. A theoretical analysis of a piezoelectric ultrasound device with an active matching layer. Mulholland AJ, O'Leary RL, Ramadas N, Parr A, Troge A, Pethrick RA, Hayward G. Ultrasonics; 2007 Dec 22; 47(1-4):102-10. PubMed ID: 17892890 [Abstract] [Full Text] [Related]
17. Dynamic modeling of thickness-mode piezoelectric transducer using the block diagram approach. Wang SH, Tsai MC. Ultrasonics; 2011 Jul 22; 51(5):617-24. PubMed ID: 21292292 [Abstract] [Full Text] [Related]
18. Design of an ultrasonic sensor for measuring distance and detecting obstacles. Park J, Je Y, Lee H, Moon W. Ultrasonics; 2010 Mar 22; 50(3):340-6. PubMed ID: 19919873 [Abstract] [Full Text] [Related]
20. Self-characterization of commercial ultrasound probes in transmission acoustic inverse scattering: transducer model and volume integral formulation. Haynes M, Verweij SA, Moghaddam M, Carson PL. IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar 22; 61(3):467-80. PubMed ID: 24569251 [Abstract] [Full Text] [Related] Page: [Next] [New Search]