These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 18334343

  • 41. Quantitative three-dimensional elasticity imaging from quasi-static deformation: a phantom study.
    Richards MS, Barbone PE, Oberai AA.
    Phys Med Biol; 2009 Feb 07; 54(3):757-79. PubMed ID: 19131669
    [Abstract] [Full Text] [Related]

  • 42. Supersonic shear imaging: a new technique for soft tissue elasticity mapping.
    Bercoff J, Tanter M, Fink M.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Apr 07; 51(4):396-409. PubMed ID: 15139541
    [Abstract] [Full Text] [Related]

  • 43. Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography With Lamb Wave Model.
    Shih CC, Qian X, Ma T, Han Z, Huang CC, Zhou Q, Shung KK.
    IEEE Trans Med Imaging; 2018 Aug 07; 37(8):1887-1898. PubMed ID: 29993652
    [Abstract] [Full Text] [Related]

  • 44. Ultrasonic strain imaging and reconstructive elastography for biological tissue.
    Khaled W, Reichling S, Bruhns OT, Ermert H.
    Ultrasonics; 2006 Dec 22; 44 Suppl 1():e199-202. PubMed ID: 16857230
    [Abstract] [Full Text] [Related]

  • 45. Radiation force imaging of viscoelastic properties with reduced artifacts.
    Viola F, Walker WF.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun 22; 50(6):736-42. PubMed ID: 12839188
    [Abstract] [Full Text] [Related]

  • 46. Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
    Arunachalam SP, Rossman PJ, Arani A, Lake DS, Glaser KJ, Trzasko JD, Manduca A, McGee KP, Ehman RL, Araoz PA.
    Magn Reson Med; 2017 Mar 22; 77(3):1184-1192. PubMed ID: 27016276
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Model-based ultrasound tomography: tissue phantom experiments.
    Zhao H, Gu X, Jiang H.
    Med Phys; 2005 Aug 22; 32(8):2659-64. PubMed ID: 16193796
    [Abstract] [Full Text] [Related]

  • 52. Comparison between shear wave dispersion magneto motive ultrasound and transient elastography for measuring tissue-mimicking phantom viscoelasticity.
    Almeida TW, Sampaio DR, Bruno AC, Pavan TZ, Carneiro AA.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec 22; 62(12):2138-45. PubMed ID: 26670853
    [Abstract] [Full Text] [Related]

  • 53. Linear approach to axial resolution in elasticity imaging.
    Liu J, Abbey CK, Insana MF.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun 22; 51(6):716-25. PubMed ID: 15244285
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Multi-push (MP) acoustic radiation force (ARF) ultrasound for assessing tissue viscoelasticity, in vivo.
    Scola MR, Baggesen LM, Gallippi CM.
    Annu Int Conf IEEE Eng Med Biol Soc; 2012 Jun 22; 2012():2323-6. PubMed ID: 23366389
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.