These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 18334449
21. Application of nanosized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties. Lin BL, Shen XD, Cui S. Biomed Mater; 2007 Jun; 2(2):132-4. PubMed ID: 18458446 [Abstract] [Full Text] [Related]
22. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Johannsen M, Thiesen B, Gneveckow U, Taymoorian K, Waldöfner N, Scholz R, Deger S, Jung K, Loening SA, Jordan A. Prostate; 2006 Jan 01; 66(1):97-104. PubMed ID: 16114060 [Abstract] [Full Text] [Related]
23. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Taratula O, Dani RK, Schumann C, Xu H, Wang A, Song H, Dhagat P, Taratula O. Int J Pharm; 2013 Dec 15; 458(1):169-80. PubMed ID: 24091153 [Abstract] [Full Text] [Related]
24. Micellar nanoparticle formation via electrostatic interactions for delivering multinuclear platinum(II) drugs. Xiao H, Stefanick JF, Jia X, Jing X, Kiziltepe T, Zhang Y, Bilgicer B. Chem Commun (Camb); 2013 May 25; 49(42):4809-11. PubMed ID: 23595166 [Abstract] [Full Text] [Related]
25. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J, Zink JI. J Am Chem Soc; 2010 Aug 11; 132(31):10623-5. PubMed ID: 20681678 [Abstract] [Full Text] [Related]
26. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. Kim DH, Kim KN, Kim KM, Lee YK. J Biomed Mater Res A; 2009 Jan 11; 88(1):1-11. PubMed ID: 18257079 [Abstract] [Full Text] [Related]
27. [Total-body hyperthermia and combined anticancer chemotherapy]. Maeta M, Koga S. Gan To Kagaku Ryoho; 1985 Nov 11; 12(11):2106-13. PubMed ID: 3933433 [Abstract] [Full Text] [Related]
28. Hyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinum. Lee JS, Rodríguez-Luccioni HL, Méndez J, Sood AK, Lpez-Berestein G, Rinaldi C, Torres-Lugo M. J Nanosci Nanotechnol; 2011 May 11; 11(5):4153-7. PubMed ID: 21780419 [Abstract] [Full Text] [Related]
29. Polybutylcyanoacrylate magnetic nanoparticles as carriers of adriamycin. Cai L, Niu G, Hu Z, Jin W, Wang J, Sun L. J Drug Target; 2009 Apr 11; 17(3):200-6. PubMed ID: 19558359 [Abstract] [Full Text] [Related]
30. Hyperthermia, cisplatin and radiation trimodality treatment: a promising cancer treatment? A review from preclinical studies to clinical application. Bergs JW, Franken NA, Haveman J, Geijsen ED, Crezee J, van Bree C. Int J Hyperthermia; 2007 Jun 11; 23(4):329-41. PubMed ID: 17558732 [Abstract] [Full Text] [Related]
31. Magnetic nanoparticles: prospects in cancer imaging and therapy. Tang M, Russell PJ, Khatri A. Discov Med; 2007 Jun 11; 7(38):68-74. PubMed ID: 18093468 [Abstract] [Full Text] [Related]
32. The evaluation of thermal cisplatin sensitization in normal and XP human cells using mild hyperthermia at 40 and 41 degrees C. Raaphorst GP, Yang DP. Anticancer Res; 2005 Jun 11; 25(4):2649-53. PubMed ID: 16080507 [Abstract] [Full Text] [Related]
33. Solution to the bioheat equation for hyperthermia with La(1-x)Ag(y)MnO(3-delta) nanoparticles: the effect of temperature autostabilization. Atsarkin VA, Levkin LV, Posvyanskiy VS, Melnikov OV, Markelova MN, Gorbenko OY, Kaul AR. Int J Hyperthermia; 2009 May 11; 25(3):240-7. PubMed ID: 19437239 [Abstract] [Full Text] [Related]
34. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S. Angew Chem Int Ed Engl; 2008 May 11; 47(29):5362-5. PubMed ID: 18551493 [No Abstract] [Full Text] [Related]
35. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Tang QS, Zhang DS, Cong XM, Wan ML, Jin LQ. Biomaterials; 2008 Jun 11; 29(17):2673-9. PubMed ID: 18396332 [Abstract] [Full Text] [Related]
36. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Martin AL, Bernas LM, Rutt BK, Foster PJ, Gillies ER. Bioconjug Chem; 2008 Dec 11; 19(12):2375-84. PubMed ID: 19053308 [Abstract] [Full Text] [Related]
37. Cytokine adsorption/release on uniform magnetic nanoparticles for localized drug delivery. Mejías R, Costo R, Roca AG, Arias CF, Veintemillas-Verdaguer S, González-Carreño T, del Puerto Morales M, Serna CJ, Mañes S, Barber DF. J Control Release; 2008 Sep 10; 130(2):168-74. PubMed ID: 18588929 [Abstract] [Full Text] [Related]
38. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. He M, Zhao Z, Yin L, Tang C, Yin C. Int J Pharm; 2009 May 21; 373(1-2):165-73. PubMed ID: 19429302 [Abstract] [Full Text] [Related]
39. [Targeting therapy with a drug using temperature-sensitive liposomes entrapped antitumor drug together with localized hyperthermia]. Ogawa Y, Toguchi H. Gan To Kagaku Ryoho; 1990 Jun 21; 17(6):1127-33. PubMed ID: 2350189 [Abstract] [Full Text] [Related]
40. [Hyperthermia in combination with radiotherapy]. van der Zee J, van Rhoon GC, Haveman J, González González D. Ned Tijdschr Geneeskd; 1999 Jan 09; 143(2):76-80. PubMed ID: 10086108 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]