These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS). Chan RW. J Rheol (N Y N Y); 2018 May; 62(3):695-712. PubMed ID: 29780189 [Abstract] [Full Text] [Related]
23. Characterization of chronic vocal fold scarring in a rabbit model. Rousseau B, Hirano S, Chan RW, Welham NV, Thibeault SL, Ford CN, Bless DM. J Voice; 2004 Mar; 18(1):116-24. PubMed ID: 15070231 [Abstract] [Full Text] [Related]
24. Mechanomimetic hydrogels for vocal fold lamina propria regeneration. Kutty JK, Webb K. J Biomater Sci Polym Ed; 2009 Mar; 20(5-6):737-56. PubMed ID: 19323887 [Abstract] [Full Text] [Related]
25. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior. Schmitt C, Hadj Henni A, Cloutier G. J Biomech; 2011 Feb 24; 44(4):622-9. PubMed ID: 21122863 [Abstract] [Full Text] [Related]
26. Viscoelastic shear properties of human vocal fold mucosa: theoretical characterization based on constitutive modeling. Chan RW, Titze IR. J Acoust Soc Am; 2000 Jan 24; 107(1):565-80. PubMed ID: 10641665 [Abstract] [Full Text] [Related]
27. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C, Wang L, Yang Z, Kim G, Chen H, Ge Z. J Biomater Sci Polym Ed; 2012 Jan 24; 23(1-4):405-24. PubMed ID: 21310105 [Abstract] [Full Text] [Related]
28. Formulation and characterization of a porous, elastomeric biomaterial for vocal fold tissue engineering research. Gaston J, Bartlett RS, Klemuk SA, Thibeault SL. Ann Otol Rhinol Laryngol; 2014 Dec 24; 123(12):866-74. PubMed ID: 24944281 [Abstract] [Full Text] [Related]
29. Viscoelastic shear properties of the fresh porcine lens. Schachar RA, Chan RW, Fu M. Br J Ophthalmol; 2007 Mar 24; 91(3):366-8. PubMed ID: 17035268 [Abstract] [Full Text] [Related]
30. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Samourides A, Browning L, Hearnden V, Chen B. Mater Sci Eng C Mater Biol Appl; 2020 Mar 24; 108():110384. PubMed ID: 31924046 [Abstract] [Full Text] [Related]
31. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Jia X, Yeo Y, Clifton RJ, Jiao T, Kohane DS, Kobler JB, Zeitels SM, Langer R. Biomacromolecules; 2006 Dec 24; 7(12):3336-44. PubMed ID: 17154461 [Abstract] [Full Text] [Related]
32. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R, Salehi R, Ramazani A. J Biomater Appl; 2019 Mar 24; 33(8):1128-1144. PubMed ID: 30651055 [Abstract] [Full Text] [Related]
33. Electrospun fiber constructs for vocal fold tissue engineering: effects of alignment and elastomeric polypeptide coating. Hughes LA, Gaston J, McAlindon K, Woodhouse KA, Thibeault SL. Acta Biomater; 2015 Feb 24; 13():111-20. PubMed ID: 25462850 [Abstract] [Full Text] [Related]
34. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering. Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M. Carbohydr Polym; 2015 Nov 05; 132():146-55. PubMed ID: 26256335 [Abstract] [Full Text] [Related]
35. Viscoelastic properties of decellularized and freeze-dried human dermis between i909c and 40cC. Jia QP, Huang SL, Tang YT, Sun WQ. Cryo Letters; 2024 Nov 05; 45(1):55-59. PubMed ID: 38538373 [Abstract] [Full Text] [Related]
36. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J, Duval H, Barou F, Lv P, David B, Letourneur D. Acta Biomater; 2019 Aug 05; 94():195-203. PubMed ID: 31154055 [Abstract] [Full Text] [Related]
37. The anisotropic nature of the human vocal fold: an ex vivo study. Rohlfs AK, Goodyer E, Clauditz T, Hess M, Kob M, Koops S, Püschel K, Roemer FW, Müller F. Eur Arch Otorhinolaryngol; 2013 May 05; 270(6):1885-95. PubMed ID: 23536135 [Abstract] [Full Text] [Related]
38. Histologic and rheologic characterization of vocal fold scarring. Thibeault SL, Gray SD, Bless DM, Chan RW, Ford CN. J Voice; 2002 Mar 05; 16(1):96-104. PubMed ID: 12002893 [Abstract] [Full Text] [Related]
39. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis. Reiter R, Freise C, Jöhrens K, Kamphues C, Seehofer D, Stockmann M, Somasundaram R, Asbach P, Braun J, Samani A, Sack I. J Biomech; 2014 May 07; 47(7):1665-74. PubMed ID: 24657103 [Abstract] [Full Text] [Related]
40. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ, Gleeson JP, Matsiko A, Thompson EM, O'Brien FJ. J Anat; 2015 Dec 07; 227(6):732-45. PubMed ID: 25409684 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]