These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1435 related items for PubMed ID: 18338889
1. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H, Schöps O, Woggon U, Niemeyer CM. J Am Chem Soc; 2008 Apr 09; 130(14):4815-27. PubMed ID: 18338889 [Abstract] [Full Text] [Related]
2. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H. J Am Chem Soc; 2004 Jan 14; 126(1):301-10. PubMed ID: 14709096 [Abstract] [Full Text] [Related]
3. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H. J Am Chem Soc; 2005 Feb 02; 127(4):1242-50. PubMed ID: 15669863 [Abstract] [Full Text] [Related]
4. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, Armstrong A, Dawson PE, Hildebrandt N, Medintz IL. J Am Chem Soc; 2012 Jan 25; 134(3):1876-91. PubMed ID: 22220737 [Abstract] [Full Text] [Related]
5. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Kremers GJ, Goedhart J, van Munster EB, Gadella TW. Biochemistry; 2006 May 30; 45(21):6570-80. PubMed ID: 16716067 [Abstract] [Full Text] [Related]
6. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR, Medintz IL, Mattoussi H. Chemphyschem; 2006 Jan 16; 7(1):47-57. PubMed ID: 16370019 [Abstract] [Full Text] [Related]
7. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Algar WR, Krull UJ. Anal Chim Acta; 2007 Jan 09; 581(2):193-201. PubMed ID: 17386444 [Abstract] [Full Text] [Related]
8. Solution-phase single quantum dot fluorescence resonance energy transfer. Pons T, Medintz IL, Wang X, English DS, Mattoussi H. J Am Chem Soc; 2006 Nov 29; 128(47):15324-31. PubMed ID: 17117885 [Abstract] [Full Text] [Related]
9. Quantum dot-based multiplexed fluorescence resonance energy transfer. Clapp AR, Medintz IL, Uyeda HT, Fisher BR, Goldman ER, Bawendi MG, Mattoussi H. J Am Chem Soc; 2005 Dec 28; 127(51):18212-21. PubMed ID: 16366574 [Abstract] [Full Text] [Related]
10. DNA-directed assembly of supramolecular fluorescent protein energy transfer systems. Kukolka F, Schoeps O, Woggon U, Niemeyer CM. Bioconjug Chem; 2007 Dec 28; 18(3):621-7. PubMed ID: 17378598 [Abstract] [Full Text] [Related]
11. Two-step FRET as a structural tool. Watrob HM, Pan CP, Barkley MD. J Am Chem Soc; 2003 Jun 18; 125(24):7336-43. PubMed ID: 12797808 [Abstract] [Full Text] [Related]
12. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Algar WR, Krull UJ. Anal Chem; 2010 Jan 01; 82(1):400-5. PubMed ID: 19938821 [Abstract] [Full Text] [Related]
13. Quantum dot-based resonance energy transfer and its growing application in biology. Medintz IL, Mattoussi H. Phys Chem Chem Phys; 2009 Jan 07; 11(1):17-45. PubMed ID: 19081907 [Abstract] [Full Text] [Related]
14. Isolation of FRET-positive cells using single 408-nm laser flow cytometry. van Wageningen S, Pennings AH, van der Reijden BA, Boezeman JB, de Lange F, Jansen JH. Cytometry A; 2006 Apr 07; 69(4):291-8. PubMed ID: 16498686 [Abstract] [Full Text] [Related]
15. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. Nat Mater; 2003 Sep 07; 2(9):630-8. PubMed ID: 12942071 [Abstract] [Full Text] [Related]
16. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. Biju V, Itoh T, Baba Y, Ishikawa M. J Phys Chem B; 2006 Dec 28; 110(51):26068-74. PubMed ID: 17181259 [Abstract] [Full Text] [Related]
17. Self-assembled quantum dot-sensitized multivalent DNA photonic wires. Boeneman K, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Melinger JS, Ancona M, Stewart MH, Susumu K, Huston A, Medintz IL. J Am Chem Soc; 2010 Dec 29; 132(51):18177-90. PubMed ID: 21141858 [Abstract] [Full Text] [Related]
18. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Shi L, Rosenzweig N, Rosenzweig Z. Anal Chem; 2007 Jan 01; 79(1):208-14. PubMed ID: 17194141 [Abstract] [Full Text] [Related]
19. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H. J Am Chem Soc; 2005 May 11; 127(18):6744-51. PubMed ID: 15869297 [Abstract] [Full Text] [Related]
20. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer. Algar WR, Krull UJ. Langmuir; 2009 Jan 06; 25(1):633-8. PubMed ID: 19115878 [Abstract] [Full Text] [Related] Page: [Next] [New Search]