These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
205 related items for PubMed ID: 18344438
1. Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. Fang YH, Muzic RF. J Nucl Med; 2008 Apr; 49(4):606-14. PubMed ID: 18344438 [Abstract] [Full Text] [Related]
2. An improved optimization algorithm of the three-compartment model with spillover and partial volume corrections for dynamic FDG PET images of small animal hearts in vivo. Li Y, Kundu BK. Phys Med Biol; 2018 Feb 26; 63(5):055003. PubMed ID: 29480159 [Abstract] [Full Text] [Related]
3. Measurement of input functions in rodents: challenges and solutions. Laforest R, Sharp TL, Engelbach JA, Fettig NM, Herrero P, Kim J, Lewis JS, Rowland DJ, Tai YC, Welch MJ. Nucl Med Biol; 2005 Oct 26; 32(7):679-85. PubMed ID: 16243642 [Abstract] [Full Text] [Related]
4. Noninvasive estimation of the input function for dynamic mouse 18F-FDG microPET studies. Mu W, Chen Z, Dai X, Tian J. IEEE Trans Biomed Eng; 2013 Nov 26; 60(11):3103-12. PubMed ID: 23797213 [Abstract] [Full Text] [Related]
5. Is the physical decay correction of the (18)F-FDG input function in dynamic PET imaging justified? Laffon E, Barret O, Marthan R, Ducassou D. J Nucl Med Technol; 2009 Jun 26; 37(2):111-3. PubMed ID: 19447853 [Abstract] [Full Text] [Related]
6. An alternative method to normalize clinical FDG studies. Sandell A, Ohlsson T, Erlandsson K, Strand SE. J Nucl Med; 1998 Mar 26; 39(3):552-5. PubMed ID: 9529310 [Abstract] [Full Text] [Related]
7. Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using (18)F-FDG PET: application to focal cerebral ischemia. Backes H, Walberer M, Endepols H, Neumaier B, Graf R, Wienhard K, Mies G. J Nucl Med; 2011 Aug 26; 52(8):1252-60. PubMed ID: 21764786 [Abstract] [Full Text] [Related]
8. Simplifications in analyzing positron emission tomography data: effects on outcome measures. Logan J, Alexoff D, Kriplani A. Nucl Med Biol; 2007 Oct 26; 34(7):743-56. PubMed ID: 17921027 [Abstract] [Full Text] [Related]
9. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. Ohtake T, Kosaka N, Watanabe T, Yokoyama I, Moritan T, Masuo M, Iizuka M, Kozeni K, Momose T, Oku S. J Nucl Med; 1991 Jul 26; 32(7):1432-8. PubMed ID: 2066802 [Abstract] [Full Text] [Related]
10. Model Corrected Blood Input Function to Compute Cerebral FDG Uptake Rates From Dynamic Total-Body PET Images of Rats in vivo. Massey JC, Seshadri V, Paul S, Mińczuk K, Molinos C, Li J, Kundu BK. Front Med (Lausanne); 2021 Jul 26; 8():618645. PubMed ID: 33898476 [Abstract] [Full Text] [Related]
11. Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample. Tantawy MN, Peterson TE. Mol Imaging; 2010 Apr 26; 9(2):76-86. PubMed ID: 20236605 [Abstract] [Full Text] [Related]
12. Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data. Ferl GZ, Zhang X, Wu HM, Kreissl MC, Huang SC. J Nucl Med; 2007 Dec 26; 48(12):2037-45. PubMed ID: 18006615 [Abstract] [Full Text] [Related]
13. Improved derivation of input function in dynamic mouse [18F]FDG PET using bladder radioactivity kinetics. Wong KP, Zhang X, Huang SC. Mol Imaging Biol; 2013 Aug 26; 15(4):486-96. PubMed ID: 23322346 [Abstract] [Full Text] [Related]
14. Operational lumped constant for FDG in normal adult male rats. Tokugawa J, Ravasi L, Nakayama T, Schmidt KC, Sokoloff L. J Nucl Med; 2007 Jan 26; 48(1):94-9. PubMed ID: 17204704 [Abstract] [Full Text] [Related]
15. Correction for the effect of rising plasma glucose levels on quantification of MR(glc) with FDG-PET. Dunn JT, Anthony K, Amiel SA, Marsden PK. J Cereb Blood Flow Metab; 2009 May 26; 29(5):1059-67. PubMed ID: 19293824 [Abstract] [Full Text] [Related]
16. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment. Vriens D, de Geus-Oei LF, Oyen WJ, Visser EP. J Nucl Med; 2009 Dec 26; 50(12):1933-9. PubMed ID: 19910436 [Abstract] [Full Text] [Related]
17. Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method. Kudomi N, Watabe H, Hayashi T, Iida H. Phys Med Biol; 2007 Apr 07; 52(7):1893-908. PubMed ID: 17374918 [Abstract] [Full Text] [Related]
18. Impact of Image-Derived Input Function and Fit Time Intervals on Patlak Quantification of Myocardial Glucose Uptake in Mice. Thackeray JT, Bankstahl JP, Bengel FM. J Nucl Med; 2015 Oct 07; 56(10):1615-21. PubMed ID: 26272811 [Abstract] [Full Text] [Related]
19. Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice. Lanz B, Poitry-Yamate C, Gruetter R. J Nucl Med; 2014 Aug 07; 55(8):1380-8. PubMed ID: 24914058 [Abstract] [Full Text] [Related]
20. Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. De Giorgi U, Valero V, Rohren E, Dawood S, Ueno NT, Miller MC, Doyle GV, Jackson S, Andreopoulou E, Handy BC, Reuben JM, Fritsche HA, Macapinlac HA, Hortobagyi GN, Cristofanilli M. J Clin Oncol; 2009 Jul 10; 27(20):3303-11. PubMed ID: 19451443 [Abstract] [Full Text] [Related] Page: [Next] [New Search]