These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
314 related items for PubMed ID: 18346848
1. A novel slurry sampling analysis of lead in different water samples by electrothermal atomic absorption spectrometry after coprecipitated with cobalt/pyrrolidine dithiocarbamate complex. Baysal A, Akman S, Calisir F. J Hazard Mater; 2008 Oct 30; 158(2-3):454-9. PubMed ID: 18346848 [Abstract] [Full Text] [Related]
2. Slurry analysis after lead collection on a sorbent and its determination by electrothermal atomic absorption spectrometry. Baysal A, Tokman N, Akman S, Ozeroglu C. J Hazard Mater; 2008 Feb 11; 150(3):804-8. PubMed ID: 17597292 [Abstract] [Full Text] [Related]
3. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples. Zeini Jahromi E, Bidari A, Assadi Y, Milani Hosseini MR, Jamali MR. Anal Chim Acta; 2007 Mar 07; 585(2):305-11. PubMed ID: 17386679 [Abstract] [Full Text] [Related]
7. Preconcentration by coprecipitation of arsenic and tin in natural waters with a Ni-pyrrolidine dithiocarbamate complex and their direct determination by solid-sampling atomic-absorption spectrometry. Zhang Q, Minami H, Imoue S, Atsuya I. Fresenius J Anal Chem; 2001 Aug 07; 370(7):860-4. PubMed ID: 11569865 [Abstract] [Full Text] [Related]
8. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony(III) and antimony(V) in food packaging materials. Jiang X, Wen S, Xiang G. J Hazard Mater; 2010 Mar 15; 175(1-3):146-50. PubMed ID: 19853991 [Abstract] [Full Text] [Related]
9. Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique. Baig JA, Kazi TG, Shah AQ, Arain MB, Afridi HI, Kandhro GA, Khan S. Anal Chim Acta; 2009 Sep 28; 651(1):57-63. PubMed ID: 19733735 [Abstract] [Full Text] [Related]
10. A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Citak D, Tuzen M. Food Chem Toxicol; 2010 May 28; 48(5):1399-404. PubMed ID: 20226223 [Abstract] [Full Text] [Related]
11. [Application of internal standardization to rapid coprecipitation technique using APDC-Cu(II) for FAAS determination of lead in salt]. Su YD, Li J, Huang Y, Chen LW. Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Mar 28; 26(3):564-6. PubMed ID: 16830782 [Abstract] [Full Text] [Related]
12. Determination of inorganic selenium species in water and garlic samples with on-line ionic liquid dispersive microextraction and electrothermal atomic absorption spectrometry. Martinis EM, Escudero LB, Berton P, Monasterio RP, Filippini MF, Wuilloud RG. Talanta; 2011 Sep 30; 85(4):2182-8. PubMed ID: 21872076 [Abstract] [Full Text] [Related]
13. Cloud point extraction for cobalt preconcentration with on-line phase separation in a knotted reactor followed by ETAAS determination in drinking waters. Gil RA, Gásquez JA, Olsina R, Martinez LD, Cerutti S. Talanta; 2008 Jul 30; 76(3):669-73. PubMed ID: 18585337 [Abstract] [Full Text] [Related]
14. The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry. Tokman N. J Hazard Mater; 2007 May 08; 143(1-2):87-94. PubMed ID: 17030426 [Abstract] [Full Text] [Related]
15. Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS). Bidabadi MS, Dadfarnia S, Shabani AM. J Hazard Mater; 2009 Jul 15; 166(1):291-6. PubMed ID: 19117672 [Abstract] [Full Text] [Related]
16. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Anthemidis AN, Ioannou KI. Talanta; 2009 Jun 30; 79(1):86-91. PubMed ID: 19376348 [Abstract] [Full Text] [Related]
17. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Tuzen M, Soylak M. J Hazard Mater; 2009 Mar 15; 162(2-3):724-9. PubMed ID: 18584957 [Abstract] [Full Text] [Related]
18. Ultra-trace determination of silver in water samples by electrothermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology. Manzoori JL, Abdolmohammad-Zadeh H, Amjadi M. J Hazard Mater; 2007 Jun 01; 144(1-2):458-63. PubMed ID: 17141406 [Abstract] [Full Text] [Related]
19. Cloud point extraction for speciation of chromium in water samples by electrothermal atomic absorption spectrometry. Zhu X, Hu B, Jiang Z, Li M. Water Res; 2005 Feb 01; 39(4):589-95. PubMed ID: 15707631 [Abstract] [Full Text] [Related]
20. Bi(III)4-methylpiperidinedithiocarbamate coprecipitation procedure for separation--pre-concentration of trace metal ions in water samples by flame atomic absorption spectrometric determination. Efendioğlu A, Yağan M, Bati B. J Hazard Mater; 2007 Oct 01; 149(1):160-5. PubMed ID: 17467895 [Abstract] [Full Text] [Related] Page: [Next] [New Search]