These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


346 related items for PubMed ID: 18350483

  • 1. [Relevance of different sequences in MRI-detected subchondral bone damage of the knee joint and possible therapeutic options].
    Lahm A, Spank H, Mrosek E, Frauendorf H, Merk H.
    Sportverletz Sportschaden; 2008 Mar; 22(1):38-44. PubMed ID: 18350483
    [Abstract] [Full Text] [Related]

  • 2. An experimental canine model for subchondral lesions of the knee joint.
    Lahm A, Uhl M, Edlich M, Erggelet C, Haberstroh J, Kreuz PC.
    Knee; 2005 Jan; 12(1):51-5. PubMed ID: 15664878
    [Abstract] [Full Text] [Related]

  • 3. Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI.
    Roemer FW, Bohndorf K.
    Skeletal Radiol; 2002 Nov; 31(11):615-23. PubMed ID: 12395272
    [Abstract] [Full Text] [Related]

  • 4. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S.
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [Abstract] [Full Text] [Related]

  • 5. [Classification, significance and sequelae of posttraumatic "occult" bone and cartilage fractures of the knee. The role of magnetic resonance].
    Macarini L, Zaccheo N, Garribba AP, Angelelli G, Rotondo A.
    Radiol Med; 1995 Dec; 90(6):699-706. PubMed ID: 8685452
    [Abstract] [Full Text] [Related]

  • 6. ["Occult" posttraumatic lesions of the knee: can magnetic resonance substitute for diagnostic arthroscopy?].
    Tamburrini O, Bianchi D, Capparelli G, Barresi D, Arcuri PP, Barbalace G, Stanà C.
    Radiol Med; 1997 Nov; 94(5):433-9. PubMed ID: 9465206
    [Abstract] [Full Text] [Related]

  • 7. Evaluation of bone contusions with fat-saturated fast spin-echo proton-density magnetic resonance imaging.
    Lal NR, Jamadar DA, Doi K, Newman JS, Adler RS, Uri DS, Kazerooni EA.
    Can Assoc Radiol J; 2000 Jun; 51(3):182-5. PubMed ID: 10914084
    [Abstract] [Full Text] [Related]

  • 8. Osteochondral defect repair after implantation of biodegradable scaffolds: indirect magnetic resonance arthrography and histopathologic correlation.
    Streitparth F, Schöttle P, Schlichting K, Schell H, Fischbach F, Denecke T, Duda GN, Schröder RJ.
    Acta Radiol; 2009 Sep; 50(7):765-74. PubMed ID: 19626474
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. [MRI monitoring of autologous hyaline cartilage grafts in the knee joint: a follow-up study over 12 months].
    Müller-Horvat C, Schick F, Claussen CD, Grönewäller E.
    Rofo; 2004 Dec; 176(12):1776-85. PubMed ID: 15573289
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. [Magnetic resonance in the identification and assessment of extent and severity of bone contusion damage: comparison of several types of imaging (SE/T1, GE/T2 and SE/T1) with fat suppression].
    Cappabianca S, Iscaro FM, Sirignano C, Napoli E, Del Vecchio W.
    Radiol Med; 1998 Nov; 96(5):439-45. PubMed ID: 10051866
    [Abstract] [Full Text] [Related]

  • 14. [Acute, traumatic versus chronic cartilage lesions as terms of a medical expert's opinion].
    Hempfling H, Bohndorf K, Roemer F.
    Z Orthop Unfall; 2008 Nov; 146(3):381-91. PubMed ID: 18561086
    [Abstract] [Full Text] [Related]

  • 15. The evaluation of articular cartilage lesions of the knee with a 3-Tesla magnet.
    von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M.
    Arthroscopy; 2007 May; 23(5):496-502. PubMed ID: 17478280
    [Abstract] [Full Text] [Related]

  • 16. Imaging articular cartilage defects in the ankle joint with 3D fat-suppressed echo planar imaging: comparison with conventional 3D fat-suppressed gradient echo imaging.
    Ba-Ssalamah A, Schibany N, Puig S, Herneth AM, Noebauer-Huhmann IM, Trattnig S.
    J Magn Reson Imaging; 2002 Aug; 16(2):209-16. PubMed ID: 12203770
    [Abstract] [Full Text] [Related]

  • 17. Indirect MR-arthrography in osteochondral autograft and crushed bone graft with a collagen membrane--correlation with histology.
    Streitparth F, Schöttle P, Schell H, Lehmkuhl L, Madej T, Wieners G, Duda GN, Schröder RJ.
    Eur J Radiol; 2009 Apr; 70(1):155-64. PubMed ID: 18289819
    [Abstract] [Full Text] [Related]

  • 18. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis.
    Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K, Guermazi A.
    Osteoarthritis Cartilage; 2009 Sep; 17(9):1115-31. PubMed ID: 19358902
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.
    Hannila I, Nieminen MT, Rauvala E, Tervonen O, Ojala R.
    Acta Radiol; 2007 May; 48(4):444-8. PubMed ID: 17453527
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.