These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
267 related items for PubMed ID: 18367327
1. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes. Sirianuntapiboon S, Sansak J. J Hazard Mater; 2008 Nov 30; 159(2-3):404-11. PubMed ID: 18367327 [Abstract] [Full Text] [Related]
2. Removal of disperse dyes from textile wastewater using bio-sludge. Sirianuntapiboon S, Srisornsak P. Bioresour Technol; 2007 Mar 30; 98(5):1057-66. PubMed ID: 16797981 [Abstract] [Full Text] [Related]
3. Some properties of a sequencing batch reactor system for removal of vat dyes. Sirianuntapiboon S, Chairattanawan K, Jungphungsukpanich S. Bioresour Technol; 2006 Jul 30; 97(10):1243-52. PubMed ID: 16023339 [Abstract] [Full Text] [Related]
4. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes. Sirianuntapiboon S, Sadahiro O, Salee P. J Environ Manage; 2007 Oct 30; 85(1):162-70. PubMed ID: 17046148 [Abstract] [Full Text] [Related]
5. Effect of bio-sludge concentration on the efficiency of sequencing batch reactor (SBR) system to treat wastewater containing Pb2+ and Ni2+. Sirianuntapiboon S, Boonchupleing M. J Hazard Mater; 2009 Jul 15; 166(1):356-64. PubMed ID: 19097695 [Abstract] [Full Text] [Related]
6. Removal of Pb2+ and Ni2+ by bio-sludge in sequencing batch reactor (SBR) and granular activated carbon-SBR (GAC-SBR) systems. Sirianuntapiboon S, Ungkaprasatcha O. Bioresour Technol; 2007 Oct 15; 98(14):2749-57. PubMed ID: 17092704 [Abstract] [Full Text] [Related]
7. Biological removal of cyanide compounds from electroplating wastewater (EPWW) by sequencing batch reactor (SBR) system. Sirianuntapiboon S, Chairattanawan K, Rarunroeng M. J Hazard Mater; 2008 Jun 15; 154(1-3):526-34. PubMed ID: 18054163 [Abstract] [Full Text] [Related]
8. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Sen S, Demirer GN. Water Res; 2003 Apr 15; 37(8):1868-78. PubMed ID: 12697230 [Abstract] [Full Text] [Related]
11. Removal of Zn2+ and Cu2+ by a sequencing batch reactor (SBR) system. Sirianuntapiboon S, Hongsrisuwan T. Bioresour Technol; 2007 Mar 15; 98(4):808-18. PubMed ID: 16730438 [Abstract] [Full Text] [Related]
14. Colour removal from textile waste water using bioculture in continous mode. Meenambal T, Devi D, Begum M. J Environ Sci Eng; 2006 Oct 15; 48(4):247-52. PubMed ID: 18179118 [Abstract] [Full Text] [Related]
15. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. Mohd Nasir N, Teo Ming T, Ahmadun FR, Sobri S. Water Sci Technol; 2010 Oct 15; 62(1):42-7. PubMed ID: 20595752 [Abstract] [Full Text] [Related]
16. The effect of hydraulic residence time and initial COD concentration on color and COD removal performance of the anaerobic-aerobic SBR system. Kapdan IK, Oztekin R. J Hazard Mater; 2006 Aug 25; 136(3):896-901. PubMed ID: 16504389 [Abstract] [Full Text] [Related]
17. Effect of operating parameters on color and COD removal performance of SBR: sludge age and initial dyestuff concentration. Kapdan IK, Oztekin R. J Hazard Mater; 2005 Aug 31; 123(1-3):217-22. PubMed ID: 15908110 [Abstract] [Full Text] [Related]
18. The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater. Muda K, Aris A, Salim MR, Ibrahim Z, van Loosdrecht MC, Ahmad A, Nawahwi MZ. Water Res; 2011 Oct 15; 45(16):4711-21. PubMed ID: 21714982 [Abstract] [Full Text] [Related]