These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Adaptive plasticity of the auditory space map in the optic tectum of adult and baby barn owls in response to external ear modification. Knudsen EI, Esterly SD, Olsen JF. J Neurophysiol; 1994 Jan; 71(1):79-94. PubMed ID: 8158243 [Abstract] [Full Text] [Related]
9. Sound-localization experiments with barn owls in virtual space: influence of interaural time difference on head-turning behavior. Poganiatz I, Nelken I, Wagner H. J Assoc Res Otolaryngol; 2001 Mar; 2(1):1-21. PubMed ID: 11545146 [Abstract] [Full Text] [Related]
10. Abnormal auditory experience induces frequency-specific adjustments in unit tuning for binaural localization cues in the optic tectum of juvenile owls. Gold JI, Knudsen EI. J Neurosci; 2000 Jan 15; 20(2):862-77. PubMed ID: 10632616 [Abstract] [Full Text] [Related]
11. Sound localization by barn owls in a simulated echoic environment. Spitzer MW, Takahashi TT. J Neurophysiol; 2006 Jun 15; 95(6):3571-84. PubMed ID: 16709722 [Abstract] [Full Text] [Related]
12. Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum. Mogdans J, Knudsen EI. J Neurosci; 1992 Sep 15; 12(9):3473-84. PubMed ID: 1527591 [Abstract] [Full Text] [Related]
16. A perceptual architecture for sound lateralization in man. Phillips DP. Hear Res; 2008 Apr 15; 238(1-2):124-32. PubMed ID: 17980984 [Abstract] [Full Text] [Related]
17. Binaural weighting of pinna cues in human sound localization. Hofman M, Van Opstal J. Exp Brain Res; 2003 Feb 15; 148(4):458-70. PubMed ID: 12582829 [Abstract] [Full Text] [Related]
18. Binaural model for artificial spatial sound localization based on interaural time delays and movements of the interaural axis. Kneip L, Baumann C. J Acoust Soc Am; 2008 Nov 15; 124(5):3108-19. PubMed ID: 19045796 [Abstract] [Full Text] [Related]