These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


561 related items for PubMed ID: 18371812

  • 1. Characterization of mercury species in soils by HPLC-ICP-MS and measurement of fraction removed by diffusive gradient in thin films.
    Cattani I, Spalla S, Beone GM, Del Re AA, Boccelli R, Trevisan M.
    Talanta; 2008 Feb 15; 74(5):1520-6. PubMed ID: 18371812
    [Abstract] [Full Text] [Related]

  • 2. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.
    Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R, Falnoga I, Liya Q, Faganeli J, Drobne D.
    Sci Total Environ; 2003 Mar 20; 304(1-3):231-56. PubMed ID: 12663187
    [Abstract] [Full Text] [Related]

  • 3. The role of natural purified humic acids in modifying mercury accessibility in water and soil.
    Cattani I, Zhang H, Beone GM, Del Re AA, Boccelli R, Trevisan M.
    J Environ Qual; 2009 Mar 20; 38(2):493-501. PubMed ID: 19202019
    [Abstract] [Full Text] [Related]

  • 4. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.
    Neculita CM, Zagury GJ, Deschênes L.
    J Environ Qual; 2005 Mar 20; 34(1):255-62. PubMed ID: 15647556
    [Abstract] [Full Text] [Related]

  • 5. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR, Akagi H, Mujumba J, Messo C.
    J Environ Manage; 2006 Oct 20; 81(2):167-73. PubMed ID: 16782263
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Prediction of methyl mercury uptake by rice plants ( Oryza sativa L.) using the diffusive gradient in thin films technique.
    Liu J, Feng X, Qiu G, Anderson CW, Yao H.
    Environ Sci Technol; 2012 Oct 16; 46(20):11013-20. PubMed ID: 22957473
    [Abstract] [Full Text] [Related]

  • 8. Preparation and characterization of a soil reference material from a mercury contaminated site for comparability studies.
    Kocman D, Bloom NS, Akagi H, Telmer K, Hylander L, Fajon V, Jereb V, Jaćimović R, Smodis B, Ikingura JR, Horvat M.
    J Environ Manage; 2006 Oct 16; 81(2):146-54. PubMed ID: 16757094
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.
    Kalis EJ, Temminghoff EJ, Town RM, Unsworth ER, van Riemsdijk WH.
    J Environ Qual; 2008 Oct 16; 37(6):2221-31. PubMed ID: 18948475
    [Abstract] [Full Text] [Related]

  • 11. Method of diffusive gradients in thin films (DGT) compared with other soil testing methods to predict uranium phytoavailability.
    Vandenhove H, Antunes K, Wannijn J, Duquène L, Van Hees M.
    Sci Total Environ; 2007 Feb 15; 373(2-3):542-55. PubMed ID: 17241652
    [Abstract] [Full Text] [Related]

  • 12. DGT use in contaminated site characterization. The importance of heavy metal site specific behaviour.
    Ruello ML, Sileno M, Sani D, Fava G.
    Chemosphere; 2008 Jan 15; 70(6):1135-40. PubMed ID: 17904196
    [Abstract] [Full Text] [Related]

  • 13. Methylmercury speciation in the dissolved phase of a stratified lake using the diffusive gradient in thin film technique.
    Clarisse O, Foucher D, Hintelmann H.
    Environ Pollut; 2009 Mar 15; 157(3):987-93. PubMed ID: 19028412
    [Abstract] [Full Text] [Related]

  • 14. Bioavailability of mercury in contaminated soils assessed by the diffusive gradient in thin film technique in relation to uptake by Miscanthus × giganteus.
    Ridošková A, Pelfrêne A, Douay F, Pelcová P, Smolíková V, Adam V.
    Environ Toxicol Chem; 2019 Feb 15; 38(2):321-328. PubMed ID: 30620786
    [Abstract] [Full Text] [Related]

  • 15. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.
    Duquène L, Vandenhove H, Tack F, Van Hees M, Wannijn J.
    J Environ Radioact; 2010 Feb 15; 101(2):140-7. PubMed ID: 19822385
    [Abstract] [Full Text] [Related]

  • 16. Mercury fractionation in contaminated soils from the Idrija mercury mine region.
    Kocman D, Horvat M, Kotnik J.
    J Environ Monit; 2004 Aug 15; 6(8):696-703. PubMed ID: 15292953
    [Abstract] [Full Text] [Related]

  • 17. Characterization of soils from an industrial complex contaminated with elemental mercury.
    Miller CL, Watson DB, Lester BP, Lowe KA, Pierce EM, Liang L.
    Environ Res; 2013 Aug 15; 125():20-9. PubMed ID: 23809204
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A, Wenke A, Biester H.
    Water Res; 2008 Jan 15; 42(1-2):91-100. PubMed ID: 17675134
    [Abstract] [Full Text] [Related]

  • 20. Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China.
    Qiu G, Feng X, Wang S, Xiao T.
    Sci Total Environ; 2006 Sep 01; 368(1):56-68. PubMed ID: 16216311
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.