These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 18374191

  • 1. Quinone oxidoreductases and vitamin K metabolism.
    Gong X, Gutala R, Jaiswal AK.
    Vitam Horm; 2008; 78():85-101. PubMed ID: 18374191
    [Abstract] [Full Text] [Related]

  • 2. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants.
    Rashid MH, Babu D, Siraki AG.
    Chem Biol Interact; 2021 Aug 25; 345():109574. PubMed ID: 34228969
    [Abstract] [Full Text] [Related]

  • 3. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.
    Caspers M, Czogalla KJ, Liphardt K, Müller J, Westhofen P, Watzka M, Oldenburg J.
    Thromb Res; 2015 May 25; 135(5):977-83. PubMed ID: 25747820
    [Abstract] [Full Text] [Related]

  • 4. Assessment of the contribution of NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) to the reduction of vitamin K in wild-type and NQO1-deficient mice.
    Ingram BO, Turbyfill JL, Bledsoe PJ, Jaiswal AK, Stafford DW.
    Biochem J; 2013 Nov 15; 456(1):47-54. PubMed ID: 24015818
    [Abstract] [Full Text] [Related]

  • 5. NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones.
    Joseph P, Jaiswal AK.
    Br J Cancer; 1998 Mar 15; 77(5):709-19. PubMed ID: 9514048
    [Abstract] [Full Text] [Related]

  • 6. Characterization and partial purification of microsomal NAD(P)H:quinone oxidoreductases.
    Jaiswal AK.
    Arch Biochem Biophys; 2000 Mar 01; 375(1):62-8. PubMed ID: 10683249
    [Abstract] [Full Text] [Related]

  • 7. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation.
    Vervoort LM, Ronden JE, Thijssen HH.
    Biochem Pharmacol; 1997 Oct 15; 54(8):871-6. PubMed ID: 9354587
    [Abstract] [Full Text] [Related]

  • 8. Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase.
    Wu K, Knox R, Sun XZ, Joseph P, Jaiswal AK, Zhang D, Deng PS, Chen S.
    Arch Biochem Biophys; 1997 Nov 15; 347(2):221-8. PubMed ID: 9367528
    [Abstract] [Full Text] [Related]

  • 9. Vitamin K1 2,3-epoxide and quinone reduction: mechanism and inhibition.
    Preusch PC, Smalley DM.
    Free Radic Res Commun; 1990 Nov 15; 8(4-6):401-15. PubMed ID: 2113031
    [Abstract] [Full Text] [Related]

  • 10. Dicoumarol: A Drug which Hits at Least Two Very Different Targets in Vitamin K Metabolism.
    Timson DJ.
    Curr Drug Targets; 2017 Nov 15; 18(5):500-510. PubMed ID: 26201483
    [Abstract] [Full Text] [Related]

  • 11. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations.
    den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC.
    Chem Res Toxicol; 2018 Feb 19; 31(2):116-126. PubMed ID: 29281794
    [Abstract] [Full Text] [Related]

  • 12. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.
    Fourie J, Oleschuk CJ, Guziec F, Guziec L, Fiterman DJ, Monterrosa C, Begleiter A.
    Cancer Chemother Pharmacol; 2002 Feb 19; 49(2):101-10. PubMed ID: 11862423
    [Abstract] [Full Text] [Related]

  • 13. Structural Insights into Phylloquinone (Vitamin K1), Menaquinone (MK4, MK7), and Menadione (Vitamin K3) Binding to VKORC1.
    Chatron N, Hammed A, Benoît E, Lattard V.
    Nutrients; 2019 Jan 01; 11(1):. PubMed ID: 30609653
    [Abstract] [Full Text] [Related]

  • 14. NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) and cytochrome P450 oxidoreductase (CYP450OR) differentially regulate menadione-mediated alterations in redox status, survival and metabolism in pancreatic β-cells.
    Gray JP, Karandrea S, Burgos DZ, Jaiswal AA, Heart EA.
    Toxicol Lett; 2016 Nov 16; 262():1-11. PubMed ID: 27558805
    [Abstract] [Full Text] [Related]

  • 15. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition.
    Guo W, Reigan P, Siegel D, Zirrolli J, Gustafson D, Ross D.
    Cancer Res; 2005 Nov 01; 65(21):10006-15. PubMed ID: 16267026
    [Abstract] [Full Text] [Related]

  • 16. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.
    Nishiyama T, Izawa T, Usami M, Ohnuma T, Ogura K, Hiratsuka A.
    Biochem Biophys Res Commun; 2010 Apr 09; 394(3):459-63. PubMed ID: 20035715
    [Abstract] [Full Text] [Related]

  • 17. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin.
    Wallin R, Martin LF.
    J Clin Invest; 1985 Nov 09; 76(5):1879-84. PubMed ID: 3932474
    [Abstract] [Full Text] [Related]

  • 18. NRH:quinone oxidoreductase 2 (NQO2) catalyzes metabolic activation of quinones and anti-tumor drugs.
    Celli CM, Tran N, Knox R, Jaiswal AK.
    Biochem Pharmacol; 2006 Jul 28; 72(3):366-76. PubMed ID: 16765324
    [Abstract] [Full Text] [Related]

  • 19. Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase.
    Buitenhuis HC, Soute BA, Vermeer C.
    Biochim Biophys Acta; 1990 May 16; 1034(2):170-5. PubMed ID: 2112953
    [Abstract] [Full Text] [Related]

  • 20. Evidence for NQO1 and NQO2 catalyzed reduction of ortho- and para-quinone methides.
    Kucera HR, Livingstone M, Moscoso CG, Gaikwad NW.
    Free Radic Res; 2013 Dec 16; 47(12):1016-26. PubMed ID: 24074361
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.