These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


497 related items for PubMed ID: 18384592

  • 1. Ground water recharge and flow characterization using multiple isotopes.
    Chowdhury AH, Uliana M, Wade S.
    Ground Water; 2008; 46(3):426-36. PubMed ID: 18384592
    [Abstract] [Full Text] [Related]

  • 2. Forensic isotope analysis to refine a hydrologic conceptual model.
    Bassett RL, Steinwand A, Jorat S, Petersen C, Jackson R.
    Ground Water; 2008; 46(3):372-83. PubMed ID: 18266731
    [Abstract] [Full Text] [Related]

  • 3. Assessment of recharge and flowpaths in a limestone thermomineral aquifer system using environmental isotope tracers (Central Portugal).
    Marques JM, Eggenkamp HG, Graca H, Carreira PM, Jose Matias M, Mayer B, Nunes D.
    Isotopes Environ Health Stud; 2010 Jun; 46(2):156-65. PubMed ID: 20582785
    [Abstract] [Full Text] [Related]

  • 4. Ground water budget analysis and cross-formational leakage in an arid basin.
    Hutchison WR, Hibbs BJ.
    Ground Water; 2008 Jun; 46(3):384-95. PubMed ID: 18384598
    [Abstract] [Full Text] [Related]

  • 5. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.
    Meredith K, Cendón DI, Pigois JP, Hollins S, Jacobsen G.
    Sci Total Environ; 2012 Jan 01; 414():456-69. PubMed ID: 22104381
    [Abstract] [Full Text] [Related]

  • 6. Geochemical quantification of semiarid mountain recharge.
    Wahi AK, Hogan JF, Ekwurzel B, Baillie MN, Eastoe CJ.
    Ground Water; 2008 Jan 01; 46(3):414-25. PubMed ID: 18194314
    [Abstract] [Full Text] [Related]

  • 7. Distinguishing sources of ground water recharge by using delta2H and delta18O.
    Blasch KW, Bryson JR.
    Ground Water; 2007 Jan 01; 45(3):294-308. PubMed ID: 17470119
    [Abstract] [Full Text] [Related]

  • 8. Tracing ground water input to base flow using sulfate (S, O) isotopes.
    Gu A, Gray F, Eastoe CJ, Norman LM, Duarte O, Long A.
    Ground Water; 2008 Jan 01; 46(3):502-9. PubMed ID: 18331327
    [Abstract] [Full Text] [Related]

  • 9. Delineation of regional arid karstic aquifers: an integrative data approach.
    Wolaver BD, Sharp JM, Rodriguez JM, Flores JC.
    Ground Water; 2008 Jan 01; 46(3):396-413. PubMed ID: 18194323
    [Abstract] [Full Text] [Related]

  • 10. Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers.
    Hibbs BJ, Darling BK.
    Ground Water; 2005 Jan 01; 43(5):750-63. PubMed ID: 16149972
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Estimation of recharge from floods in disconnected stream-aquifer systems.
    Vázquez-Suñé E, Capino B, Abarca E, Carrera J.
    Ground Water; 2007 Jan 01; 45(5):579-89. PubMed ID: 17760584
    [Abstract] [Full Text] [Related]

  • 13. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA, Cozzarelli IM, Christenson SC.
    J Contam Hydrol; 2006 Aug 10; 86(3-4):239-61. PubMed ID: 16677736
    [Abstract] [Full Text] [Related]

  • 14. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.
    Dahan O, Tatarsky B, Enzel Y, Kulls C, Seely M, Benito G.
    Ground Water; 2008 Aug 10; 46(3):450-61. PubMed ID: 18194313
    [Abstract] [Full Text] [Related]

  • 15. Modeling ground water flow in alluvial mountainous catchments on a watershed scale.
    Wolf J, Barthel R, Braun J.
    Ground Water; 2008 Aug 10; 46(5):695-705. PubMed ID: 18459959
    [Abstract] [Full Text] [Related]

  • 16. Estimating ground water recharge using flow models of perched karstic aquifers.
    Weiss M, Gvirtzman H.
    Ground Water; 2007 Aug 10; 45(6):761-73. PubMed ID: 17973754
    [Abstract] [Full Text] [Related]

  • 17. Evolution model of δ³⁴S and δ¹⁸O in dissolved sulfate in volcanic fan aquifers from recharge to coastal zone and through the Jakarta urban area, Indonesia.
    Hosono T, Delinom R, Nakano T, Kagabu M, Shimada J.
    Sci Total Environ; 2011 Jun 01; 409(13):2541-54. PubMed ID: 21507462
    [Abstract] [Full Text] [Related]

  • 18. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.
    Stotler R, Harvey FE, Gosselin DC.
    Ground Water; 2010 Jun 01; 48(3):448-64. PubMed ID: 19840126
    [Abstract] [Full Text] [Related]

  • 19. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L, Close M, Goltz M, Noonan M, Sinton L.
    J Contam Hydrol; 2005 Apr 01; 77(3):165-94. PubMed ID: 15763354
    [Abstract] [Full Text] [Related]

  • 20. Vadose zone-attenuated artificial recharge for input to a ground water model.
    Nichols WE, Wurstner SK, Eslinger PW.
    Ground Water; 2007 Apr 01; 45(4):491-8. PubMed ID: 17600580
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.