These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 18386088
1. The characteristics of multifocal electroretinogram in isolated perfused porcine eye: cellular contributions to the in vitro porcine mfERG. Ng YF, Chan HH, To CH, Yap MK. Doc Ophthalmol; 2008 Nov; 117(3):205-14. PubMed ID: 18386088 [Abstract] [Full Text] [Related]
2. Pharmacologically defined components of the normal porcine multifocal ERG. Ng YF, Chan HH, Chu PH, Siu AW, To CH, Beale BA, Gilger BC, Wong F. Doc Ophthalmol; 2008 May; 116(3):165-76. PubMed ID: 17721791 [Abstract] [Full Text] [Related]
4. Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Effects of APB, PDA, and TTX on monkey ERG responses. Hare WA, Ton H. Doc Ophthalmol; 2002 Sep; 105(2):189-222. PubMed ID: 12462444 [Abstract] [Full Text] [Related]
9. Retinal pathway origins of the pattern ERG of the mouse. Miura G, Wang MH, Ivers KM, Frishman LJ. Exp Eye Res; 2009 Jun 15; 89(1):49-62. PubMed ID: 19250935 [Abstract] [Full Text] [Related]
10. Stimulus-evoked intrinsic optical signals in the retina: pharmacologic dissection reveals outer retinal origins. Schallek J, Kardon R, Kwon Y, Abramoff M, Soliz P, Ts'o D. Invest Ophthalmol Vis Sci; 2009 Oct 15; 50(10):4873-80. PubMed ID: 19420331 [Abstract] [Full Text] [Related]
11. Cellular origin of intrinsic optical signals in the rabbit retina. Naderian A, Bussières L, Thomas S, Lesage F, Casanova C. Vision Res; 2017 Aug 15; 137():40-49. PubMed ID: 28687326 [Abstract] [Full Text] [Related]
13. Luminance dependence of neural components that underlies the primate photopic electroretinogram. Ueno S, Kondo M, Niwa Y, Terasaki H, Miyake Y. Invest Ophthalmol Vis Sci; 2004 Mar 15; 45(3):1033-40. PubMed ID: 14985327 [Abstract] [Full Text] [Related]
14. The s-wave of the multifocal electroretinogram in cats. Miyamoto H, Tazawa Y, Hayasaka A, Nitta J, Egawa I, Kurosaka D. Jpn J Ophthalmol; 2006 Mar 15; 50(5):432-437. PubMed ID: 17013695 [Abstract] [Full Text] [Related]
15. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits. Horiguchi M, Suzuki S, Kondo M, Tanikawa A, Miyake Y. Invest Ophthalmol Vis Sci; 1998 Oct 15; 39(11):2171-6. PubMed ID: 9761298 [Abstract] [Full Text] [Related]
16. Retinal ganglion cell activity from the multifocal electroretinogram in pig: optic nerve section, anaesthesia and intravitreal tetrodotoxin. Lalonde MR, Chauhan BC, Tremblay F. J Physiol; 2006 Jan 15; 570(Pt 2):325-38. PubMed ID: 16284074 [Abstract] [Full Text] [Related]
17. Modification of the Xenopus electroretinogram by actions of glycine in the proximal retina. Arnarsson A, Eysteinsson T. Acta Physiol Scand; 2000 Jul 15; 169(3):249-58. PubMed ID: 10886039 [Abstract] [Full Text] [Related]
18. Identifying inner retinal contributions to the human multifocal ERG. Hood DC, Greenstein V, Frishman L, Holopigian K, Viswanathan S, Seiple W, Ahmed J, Robson JG. Vision Res; 1999 Jun 15; 39(13):2285-91. PubMed ID: 10343810 [Abstract] [Full Text] [Related]
19. The effect of pentobarbital sodium and propofol anesthesia on multifocal electroretinograms in rhesus macaques. Kim CB, Ver Hoeve JN, Nork TM. Doc Ophthalmol; 2012 Feb 15; 124(1):59-72. PubMed ID: 22200766 [Abstract] [Full Text] [Related]
20. Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina. Kang Derwent JJ, Linsenmeier RA. Vis Neurosci; 2001 Feb 15; 18(3):353-63. PubMed ID: 11497412 [Abstract] [Full Text] [Related] Page: [Next] [New Search]