These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


283 related items for PubMed ID: 18390478

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae).
    Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P.
    Mol Biol Evol; 2012 Apr; 29(4):1155-66. PubMed ID: 22101417
    [Abstract] [Full Text] [Related]

  • 3. Molecular evolution of cycloidea-like genes in Fabaceae.
    Fukuda T, Yokoyama J, Maki M.
    J Mol Evol; 2003 Nov; 57(5):588-97. PubMed ID: 14738317
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae).
    Hileman LC, Baum DA.
    Mol Biol Evol; 2003 Apr; 20(4):591-600. PubMed ID: 12679544
    [Abstract] [Full Text] [Related]

  • 8. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER.
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [Abstract] [Full Text] [Related]

  • 9. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives.
    Gubitz T, Caldwell A, Hudson A.
    Mol Biol Evol; 2003 Sep; 20(9):1537-44. PubMed ID: 12832647
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Diversification of CYCLOIDEA-like genes in Dipsacaceae (Dipsacales): implications for the evolution of capitulum inflorescences.
    Carlson SE, Howarth DG, Donoghue MJ.
    BMC Evol Biol; 2011 Nov 06; 11():325. PubMed ID: 22054400
    [Abstract] [Full Text] [Related]

  • 13. Ligulate inflorescence of Helianthus × multiflorus, cv. Soleil d'Or, correlates with a mis-regulation of a CYCLOIDEA gene characterised by insertion of a transposable element.
    Fambrini M, Bellanca M, Costa Muñoz M, Usai G, Cavallini A, Pugliesi C.
    Plant Biol (Stuttg); 2018 Nov 06; 20(6):956-967. PubMed ID: 30022587
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order.
    Bartlett ME, Specht CD.
    Am J Bot; 2011 Feb 06; 98(2):227-43. PubMed ID: 21613112
    [Abstract] [Full Text] [Related]

  • 16. Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
    Blackman BK.
    J Exp Bot; 2013 Jan 06; 64(2):421-31. PubMed ID: 23267017
    [Abstract] [Full Text] [Related]

  • 17. Patterns of nucleotide diversity in wild and cultivated sunflower.
    Liu A, Burke JM.
    Genetics; 2006 May 06; 173(1):321-30. PubMed ID: 16322511
    [Abstract] [Full Text] [Related]

  • 18. Phylogeny and domain evolution in the APETALA2-like gene family.
    Kim S, Soltis PS, Wall K, Soltis DE.
    Mol Biol Evol; 2006 Jan 06; 23(1):107-20. PubMed ID: 16151182
    [Abstract] [Full Text] [Related]

  • 19. The evolution of apical dominance in maize.
    Doebley J, Stec A, Hubbard L.
    Nature; 1997 Apr 03; 386(6624):485-8. PubMed ID: 9087405
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.