These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
285 related items for PubMed ID: 18393624
1. Discovery of ADP-ribosylation and other plant defense pathway elements through expression profiling of four different Arabidopsis-Pseudomonas R-avr interactions. Adams-Phillips L, Wan J, Tan X, Dunning FM, Meyers BC, Michelmore RW, Bent AF. Mol Plant Microbe Interact; 2008 May; 21(5):646-57. PubMed ID: 18393624 [Abstract] [Full Text] [Related]
2. The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine. Wang L, Mitra RM, Hasselmann KD, Sato M, Lenarz-Wyatt L, Cohen JD, Katagiri F, Glazebrook J. Mol Plant Microbe Interact; 2008 Nov; 21(11):1408-20. PubMed ID: 18842091 [Abstract] [Full Text] [Related]
3. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig DF, Takahashi H. Plant Cell Physiol; 2009 May; 50(5):924-34. PubMed ID: 19304739 [Abstract] [Full Text] [Related]
4. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Underwood W, Zhang S, He SY. Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704 [Abstract] [Full Text] [Related]
5. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Murray SL, Ingle RA, Petersen LN, Denby KJ. Mol Plant Microbe Interact; 2007 Nov; 20(11):1431-8. PubMed ID: 17977154 [Abstract] [Full Text] [Related]
6. A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2. Lee MW, Lu H, Jung HW, Greenberg JT. Mol Plant Microbe Interact; 2007 Oct; 20(10):1192-200. PubMed ID: 17918621 [Abstract] [Full Text] [Related]
7. Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola. Ham JH, Kim MG, Lee SY, Mackey D. Plant J; 2007 Aug; 51(4):604-16. PubMed ID: 17573803 [Abstract] [Full Text] [Related]
8. Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains. Mishina TE, Zeier J. Physiol Plant; 2007 Nov; 131(3):448-61. PubMed ID: 18251883 [Abstract] [Full Text] [Related]
9. High level expression of a virus resistance gene, RCY1, confers extreme resistance to Cucumber mosaic virus in Arabidopsis thaliana. Sekine KT, Kawakami S, Hase S, Kubota M, Ichinose Y, Shah J, Kang HG, Klessig DF, Takahashi H. Mol Plant Microbe Interact; 2008 Nov; 21(11):1398-407. PubMed ID: 18842090 [Abstract] [Full Text] [Related]
10. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E, Rostás M, Zeier J. Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097 [Abstract] [Full Text] [Related]
11. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Jagadeeswaran G, Raina S, Acharya BR, Maqbool SB, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R. Plant J; 2007 Jul; 51(2):234-46. PubMed ID: 17521413 [Abstract] [Full Text] [Related]
12. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium Sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J, Taconnat L, Renou JP, Touraine B. Mol Plant Microbe Interact; 2008 Feb; 21(2):244-59. PubMed ID: 18184068 [Abstract] [Full Text] [Related]
13. Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. de Torres Zabela M, Fernandez-Delmond I, Niittyla T, Sanchez P, Grant M. Mol Plant Microbe Interact; 2002 Aug; 15(8):808-16. PubMed ID: 12182338 [Abstract] [Full Text] [Related]
14. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Zheng Z, Qamar SA, Chen Z, Mengiste T. Plant J; 2006 Nov; 48(4):592-605. PubMed ID: 17059405 [Abstract] [Full Text] [Related]
15. AvrB mutants lose both virulence and avirulence activities on soybean and Arabidopsis. Ong LE, Innes RW. Mol Microbiol; 2006 May; 60(4):951-62. PubMed ID: 16677306 [Abstract] [Full Text] [Related]
16. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Kim KC, Fan B, Chen Z. Plant Physiol; 2006 Nov; 142(3):1180-92. PubMed ID: 16963526 [Abstract] [Full Text] [Related]
17. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. Zhang S, Yang X, Sun M, Sun F, Deng S, Dong H. J Integr Plant Biol; 2009 Feb; 51(2):167-74. PubMed ID: 19200155 [Abstract] [Full Text] [Related]
18. Mutations in the Pseudomonas syringae avrRpt2 gene that dissociate its virulence and avirulence activities lead to decreased efficiency in AvrRpt2-induced disappearance of RIN4. Lim MT, Kunkel BN. Mol Plant Microbe Interact; 2004 Mar; 17(3):313-21. PubMed ID: 15000398 [Abstract] [Full Text] [Related]
19. Analysis of temperature modulation of plant defense against biotrophic microbes. Wang Y, Bao Z, Zhu Y, Hua J. Mol Plant Microbe Interact; 2009 May; 22(5):498-506. PubMed ID: 19348568 [Abstract] [Full Text] [Related]
20. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Ahn IP, Lee SW, Suh SC. Mol Plant Microbe Interact; 2007 Jul; 20(7):759-68. PubMed ID: 17601164 [Abstract] [Full Text] [Related] Page: [Next] [New Search]