These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1354 related items for PubMed ID: 18394660

  • 1. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.
    Kimmig H, Ohlendorf S, Speck O, Sprenger A, Rutschmann RM, Haller S, Greenlee MW.
    Neuropsychologia; 2008; 46(8):2203-13. PubMed ID: 18394660
    [Abstract] [Full Text] [Related]

  • 2. Parametric modulation of cortical activation during smooth pursuit with and without target blanking. an fMRI study.
    Nagel M, Sprenger A, Zapf S, Erdmann C, Kömpf D, Heide W, Binkofski F, Lencer R.
    Neuroimage; 2006 Feb 15; 29(4):1319-25. PubMed ID: 16216531
    [Abstract] [Full Text] [Related]

  • 3. Cortical mechanisms of retinal and extraretinal smooth pursuit eye movements to different target velocities.
    Nagel M, Sprenger A, Hohagen F, Binkofski F, Lencer R.
    Neuroimage; 2008 Jun 15; 41(2):483-92. PubMed ID: 18420428
    [Abstract] [Full Text] [Related]

  • 4. Which retinal and extra-retinal information is crucial for circular vection?
    Mergner T, Wertheim A, Rumberger A.
    Arch Ital Biol; 2000 Apr 15; 138(2):123-38. PubMed ID: 10782254
    [Abstract] [Full Text] [Related]

  • 5. Neurophysiology and neuroanatomy of smooth pursuit in humans.
    Lencer R, Trillenberg P.
    Brain Cogn; 2008 Dec 15; 68(3):219-28. PubMed ID: 18835076
    [Abstract] [Full Text] [Related]

  • 6. Cortical mechanisms of smooth pursuit eye movements with target blanking. An fMRI study.
    Lencer R, Nagel M, Sprenger A, Zapf S, Erdmann C, Heide W, Binkofski F.
    Eur J Neurosci; 2004 Mar 15; 19(5):1430-6. PubMed ID: 15016102
    [Abstract] [Full Text] [Related]

  • 7. fMRI of optokinetic eye movements with and without a contribution of smooth pursuit.
    Schraa-Tam CK, van der Lugt A, Smits M, Frens MA, van Broekhoven PC, van der Geest JN.
    J Neuroimaging; 2008 Apr 15; 18(2):158-67. PubMed ID: 18318793
    [Abstract] [Full Text] [Related]

  • 8. Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements.
    Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W.
    Neuroimage; 2004 Feb 15; 21(2):593-600. PubMed ID: 14980561
    [Abstract] [Full Text] [Related]

  • 9. Differences between smooth pursuit and optokinetic eye movements using limited lifetime dot stimulation: a functional magnetic resonance imaging study.
    Schraa-Tam CK, van der Lugt A, Smits M, Frens MA, van Broekhoven PC, van der Geest JN.
    Clin Physiol Funct Imaging; 2009 Jul 15; 29(4):245-54. PubMed ID: 19281500
    [Abstract] [Full Text] [Related]

  • 10. Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception.
    Barton JJ, Simpson T, Kiriakopoulos E, Stewart C, Crawley A, Guthrie B, Wood M, Mikulis D.
    Ann Neurol; 1996 Sep 15; 40(3):387-98. PubMed ID: 8797528
    [Abstract] [Full Text] [Related]

  • 11. Imagery of a moving object: the role of occipital cortex and human MT/V5+.
    Kaas A, Weigelt S, Roebroeck A, Kohler A, Muckli L.
    Neuroimage; 2010 Jan 01; 49(1):794-804. PubMed ID: 19646536
    [Abstract] [Full Text] [Related]

  • 12. Visual motion, eye motion, and relative motion: A parametric fMRI study of functional specializations of smooth pursuit eye movement network areas.
    Ohlendorf S, Sprenger A, Speck O, Glauche V, Haller S, Kimmig H.
    J Vis; 2010 Dec 20; 10(14):21. PubMed ID: 21172900
    [Abstract] [Full Text] [Related]

  • 13. Retinotopic coding of extraretinal pursuit signals in early visual cortex.
    Lebranchu P, Bastin J, Pelegrini-Issac M, Lehericy S, Berthoz A, Orban GA.
    Cereb Cortex; 2010 Sep 20; 20(9):2172-87. PubMed ID: 20051358
    [Abstract] [Full Text] [Related]

  • 14. Predictive responses of periarcuate pursuit neurons to visual target motion.
    Fukushima K, Yamanobe T, Shinmei Y, Fukushima J.
    Exp Brain Res; 2002 Jul 20; 145(1):104-20. PubMed ID: 12070750
    [Abstract] [Full Text] [Related]

  • 15. The neural basis of smooth pursuit eye movements in the rhesus monkey brain.
    Ilg UJ, Thier P.
    Brain Cogn; 2008 Dec 20; 68(3):229-40. PubMed ID: 18835077
    [Abstract] [Full Text] [Related]

  • 16. Gaze pursuit, 'attention pursuit' and their effects on cortical activations.
    Ohlendorf S, Kimmig H, Glauche V, Haller S.
    Eur J Neurosci; 2007 Oct 20; 26(7):2096-108. PubMed ID: 17897405
    [Abstract] [Full Text] [Related]

  • 17. The contribution of the human FEF and SEF to smooth pursuit initiation.
    Drew AS, van Donkelaar P.
    Cereb Cortex; 2007 Nov 20; 17(11):2618-24. PubMed ID: 17255110
    [Abstract] [Full Text] [Related]

  • 18. Role of vestibular signals in the caudal part of the frontal eye fields in pursuit eye movements in three-dimensional space.
    Fukushima K, Akao T, Kurkin S, Fukushima J.
    Ann N Y Acad Sci; 2005 Apr 20; 1039():272-82. PubMed ID: 15826981
    [Abstract] [Full Text] [Related]

  • 19. Target selection by the frontal cortex during coordinated saccadic and smooth pursuit eye movements.
    Srihasam K, Bullock D, Grossberg S.
    J Cogn Neurosci; 2009 Aug 20; 21(8):1611-27. PubMed ID: 18823247
    [Abstract] [Full Text] [Related]

  • 20. Visual tracking neurons in primate area MST are activated by smooth-pursuit eye movements of an "imaginary" target.
    Ilg UJ, Thier P.
    J Neurophysiol; 2003 Sep 20; 90(3):1489-502. PubMed ID: 12736240
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 68.